

Colin White

Manager, Product Planning &

Engineering Support

CNG as TRANSPORT FUEL

Isuzu Trucks.
Celebrating
20 and
staying No.1.

- Australian pipeline natural gas is available in every capital city, and many larger regional centres
- Pipeline gas quality is very good by international standards, and compatible with design criteria for Isuzu CNG vehicles
- Sydney and Melbourne composition shown on next slide

Typical Australian NG Composition

Isuzu Trucks.
Celebrating
20 and
staying No.1.

Table 1. Natural gas compositions

Hydrocarbon gas component	Australian natural gas	Japanese natural gas
Methane	87.4-91.1% (by volume)	84.4 – 100% (by volume)
Ethane	4.7 - 5.4%	0 – 5.5%
Propane	1.0 – 2.3%	0.2 – 2.3%
Butanes	0.3-0.8%	0.1 – 1.0%
C ₅₊	0.1 – 0.5%	0 – 0.4%

Source: May2004 Report to Australian Greenhouse Office

*percentage of natural gas by volume

Isuzu's NGV Credentials

- Isuzu first built CNG light duty trucks in 1991, with mass production commencing 1998
- Isuzu has been a strong supporter of CNGVs in the Japanese market
- Isuzu CNGVs command around 70% commercial vehicle market share in Japan
- Cumulative sales to date exceed 10,000 units

Popularity of CNG Vehicles in Japan

Many types of vehicle from a low displacement car to a large-sized transit bus are manufactured and sold.

Reference ; Japan Gas Association internet home page (May. '04)

Natural gas

Popularity of CNG Vehicles in Japan

Isuzu Trucks.
Celebrating
20 and
staying No.1.

NGV's in Australia

- Alas, Australian government support for alternative fuels has been minimal
 - Up to 50% of incremental cost subsidy from 2000-2008, but with tough conditions
 - No successful support program to provide NG re-fuelling infrastructure
 - No preferential access or tax concessions to operators of alternative fuel vehicles
- Overseas governments have been far more proactive:
 - e.g. Sweden, Germany, Italy, Argentina, India, Japan

ISUZU NPR 400 CNG

2004 NPR400-CNG

- Isuzu Australia responded to customer demand, with a plan to initially import up to 30 units of domestic "ELF CNG" trucks
- Customers to be primarily local government
- Assistance from federal government of 50% of incremental cost over diesel model
 - Confirmed after GHG savings of 18% verified
 - Local modification to satisfy market demand and Australian Standards for CNG tanks
 - Local ADR testing for brake system & noise regulation

NPR400-CNG SALES

- Customers:
 - Waverley Council (inner Sydney): 2 units
 - Gosford City Council (NSW): 6 units
 - Warrnambool TAFE College: 1 unit
 - Salisbury City Council (Adelaide northern suburbs): 6 units
 - Demonstration in WA, then Private customer, TOLL IPEC: 1 unit
- Gosford Council units have been in operation for longest, with good data

Gosford City Council

- GCC fleet initially ordered 5 units with a depot refuelling site
- Project managed well, involving training, unions, all levels of management
- Positive results, even in early days
- Additional unit purchased in 2006

Gosford City Council Results

Isuzu Trucks.
Celebrating
20 and
staying No.1.

- In Service since March 2005
- No engine failures: "just as reliable as the diesel models"
- Demonstrated fuel cost saving
- CNGV Fleet has supported GCC's low emissions policy of improving air quality
- Project Manager is a keen supporter, and is now Acting Fleet Manager

Operating Data

(613L - Best Performing CNG vs 600N - Best Performing Diesel)

Cost of operation vs diesel trucks lower, even in 2006

GCC Latest Running Cost Comparison

- Gosford's recent 40 month project review
 - Started March, 2005
 - Net Diesel price, ex-GST and Fuel Tax Credit: \$0.727 / Litre
 - Net CNG price at GCC's own depot: \$0.491 / m³
 - Latest: June, 2008
 - Net Diesel price, ex-GST and Fuel Tax Credit: \$1.405 / Litre (increase of 93%)
 - Net CNG price at GCC's own depot: \$0.462 / m³ (decrease of 6%, due to new contract with gas supplier)

GCC Latest Running Cost Comparison

- Cost savings have improved dramatically over 40 month period
- June 2005: 30% cost saving vs diesel
 - CNG truck average: 11.8 c/km
 - Diesel truck average: 16.9 c/km
- June 2008: 67% cost saving vs diesel
 - CNG truck average: 10.5 c/km
 - Diesel truck average: 31.9 c/km

What has changed since 2004?

Isuzu Trucks.
Celebrating
20 and
staying No.1.

- Diesel price increased way beyond projections!
- Pump price of diesel:
 - March 2004: approx A\$1.00 / Litre
 - June 2008: A\$1.60 / Litre (and higher), or +60%!
 - May 2009: A\$1.15 / litre
 - Previous (conservative) chart predicted just a 13% rise in same period
- Customer price for CNG is same as projection, or lower in many cases

Projections of Fuel Prices in 2004

COMPARATIVE RETAIL PRICING -DIESEL/CNG

LIKELY PRICE MOVEMENTS INCLUDING POTENTIAL EFFECT OF STAGED INTRODUCTION OF 19 CENTS PER CUBIC
METRE EXCISE DUTY ON CNG FROM 2011

What has Changed since 2004?

Isuzu Trucks.
Celebrating
20 and
staying No.1.

- Actual customer data shows CNGV operating cost is now 50% less than diesel models
- Air Quality AND CO₂ reductions are both higher profile concerns than ever before
- <u>Federal Government</u> has announced a Carbon trading scheme for medium and large businesses from 2010 ???????
- Fleets are studying ALL options to reduce carbon footprint and operating costs, and have become very serious about alternative fuels.
- Gas suppliers have renewed focus on NGVs

New Model Release

Compressed Natural Gas Range

NLR200 Medium CNG 4.5 t GVM

NPR300 Medium CNG 7.0t GVM

FSR700 / 850 Medium CNG 12.0 t GVM, & 14.0 t GVM

Outstanding Low Emission Performance

Isuzu Trucks.
Celebrating
20 and
staying No.1.

Adoption of MPI (Multi Point Injection)

Fuel injection systems

2004 CNG

Gas mixer system = carburetor equivalent

Isuzu CNG MPI Engine

Is uzu CNG MPI engine achieves 2005 year New Long Term emission standard and Ultra Low Emission Vehicle standard in Japan.

Outstanding Low Emission Performance

Adoption of MPI (Multi Point Injection)

2009 + CNG-MPI

Outstanding Low Emission Performance

- Easily exceeds JNLT-05 standard
- Better than Euro6 for PM and NOx
- CO2 reductions of 10-20% (vs diesel)

Outstanding Low Emission Performance

Exhaust Emissions & Fuel Consumption Comparison vs ADR80/02 Diesel

NPR300	(For Reference)	Isuzu 4HK1-TCN 5.2L ADR80/02 Diesel Engine	Isuzu 4HV1-CNG 4.6L ADR80/03 CNG Spark Ignition Engine	CNG Engine Advantage compared to diesel (%)
Fuel Consumption (Av. Km/L) Aust Expected value		5.88		
Fuel Consumption (Av. Km/m³) Aust Expected value			5.55	
CO ₂ "Equivalent" Emissions (g/km)		446	375	18.9%
			-	
Official regulation exhaust gas limits			Japan NLT05	
comparison:	Euro 4 Standard	Euro 4 Actual	Actual	
Carbon Monoxide (CO) (g/kW.h)	4.00	0.01	0.37	90.8%
Non Methane Hydrocarbon (NMHC) (g/kW.h)	0.55	0.005	0.009	98.4%
Nitrogen Oxides (NOx) (g/kW.h)	3.50	2.86	0.19	94.6%
Particulate Matter (PM) (g/kW.h)	0.03	0.005	0.00	100.0%

Outstanding Low Emission Performance

Exhaust Emissions & Fuel Consumption Comparison vs ADR80/02 Diesel

FSR700	(For Reference)	Isuzu 6HK1-TCN 7.8L ADR80/02 Diesel Engine	Isuzu 6HF1-CNG 7.8L ADR80/03 CNG Spark Ignition Engine	CNG Engine Advantage compared to diesel (%)
Fuel Consumption (Av. Km/L) Aust Expected value		4.20		
Fuel Consumption (Av. Km/m³) Aust Expected value CO ₂ "Equivalent" Emissions (g/km)		624	4.00 520	20.0%
Official regulation exhaust gas limits	Euro 4 Stondard	Fure 4 Actual	Japan NLT05	
comparison:	Euro 4 Standard	Euro 4 Actual	Actual	00.00/
Carbon Monoxide (CO) (g/kW.h)	4.00	0	0.37	90.8%
Non Methane Hydrocarbon (NMHC) (g/kW.h)	0.55	0.01	0.013	97.6%
Nitrogen Oxides (NOx) (g/kW.h)	3.50	2.69	0.01	99.7%
Particulate Matter (PM) (g/kW.h)	0.03	0.003	0.00	100.0%

New Model Release

Compressed Natural Gas Models

NLR200 Medium CNG 4.5 t GVM

NPR300 Medium CNG 7.0t GVM

FSR700 / 850 Medium CNG 12.0 t GVM, & 14.0 t GVM

CNG NPR LAYOUT

Isuzu Trucks.
Celebrating
20 and
staying No.1.

ENG/Drive line/Frame/Sus&Axle/Brake/Fuel line: will be applied same spec as domestic model

Cab B.I.W. will be applied 700P IAL spec

CNG FSR LAYOUT

CNG MODELS

- NLR200 CNG
- 4.5t GVM
- 96 kW & 353 Nm
- 300 WL tank capacity
- 300+ km driving range
- This model aimed at express courier fleet and local council operators
- Aimed at LCV courier vans
- Available towards the end of 2009

CNG MODELS

NPR300 CNG

- 7.0t GVM
- 96 kW & 353 Nm
- 300 WL tank capacity
- 280-300 km usable driving range
- Aimed at parcel delivery and council fleets
- Higher GVM than equivalent diesel model at 6,500 kg, to compensate for higher tare mass, giving better payload

CNG MODELS

- FSR700 / 850 Medium CNG
- 12.0 t GVM, or 14.0 t GVM
- 162 kW & 735 Nm
- 500 WL tank capacity
- 350+ km usable driving range
- Aimed at MD parcel delivery fleets 12.0 t GVM gives superior payload to current diesel powered vehicles

CNG Models Preliminary Tare Masses

Isuzu Trucks.
Celebrating
20 and
staying No.1.

MODEL	W/base (mm)	MASS			CNG MASS
	,	Front	Rear	Total	PENALTY
NPR 300 CNG	3365	1830	1004	2834	163
NPR 250/300 Medium Premium	3365	1759	912	2671	
FSR 700 CNG	4660	2500	1480	3980	76
FSR 700/850 Long	5560	2452	1452	3904	

CNG Engine - 4HV1 TCN

CNG Engine - 4HV1 TCN

CNG Performance on Road

CNG Engine - 6HF1 TCN

CNG Engine - 6HF1 TCN

CNG Performance on Road

Isuzu Trucks.
Celebrating
20 and
staying No.1.

Customers for Isuzu CNG Models

- History of aftermarket CNGV conversions is mixed: many failures and service problems, with a few successes
- Australian customers have a strong preference for OEM-produced NGVs
- Isuzu OEM Product is well placed to reenter the CNGV market, taking advantage of past efforts and good results

Customers for Isuzu CNG Models

- "Return to base" operation of <300 km/day
- Large Fleets operating from fixed Depots
- Large inner urban parcel / courier fleets
- State governments, esp. Tasmania
- Bakeries (already consuming large quantities of gas at low cost)
- Local government in various locations

Thank You

colin.white@isuzu.net.au

