

In need of Scuptore

McKinsey Global Institute

Dr Jacques Bughin, Director, McKinsey Vilnius, November, 2013

CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission of McKinsey & Company is strictly prohibited

McKinsey&Company

Thank you for the invitation

Jacques Bughin, Jacques bughin@mckinsey.com, 32-477-480-230, 32-2-6454144

- Jacques Bughin is a Director with McKinsey & Company's Brussels office-
- Jacques is a core leader of the Media and Entertainment and Corporate Finance and Strategy practices. He has been a core member of MGI, MTI and co-ed Digital Economy Initiative, a major internal and external knowledge program launched by McKinsey
- Since joining the firm in 1992, he has been based in the Amsterdam, London, Montreal, New York, and Toronto offices, working mainly on projects related to telecom, media, and high-tech. He has helped clients all around the world

Background

- Jacques received a master's summa cum laude in Economics from the University of Namur (Belgium) and University of Pennsylvania
- He holds doctoral degrees in Economics and in Operations Research
- He has lectured at many universities, including Toronto, London, and Brussels
- He is also a fellow of the ECARES, a thinktank on economic policy in Belgium, and a fellow of the Applied Economics of the KUL University.

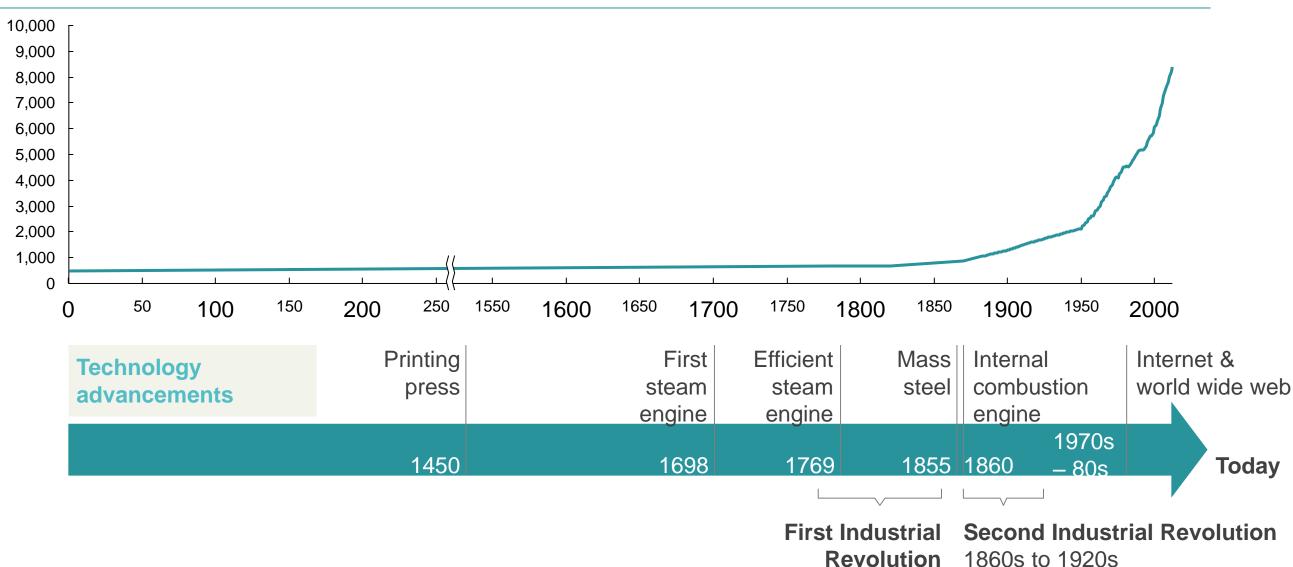
Example of publication

- McKinsey Global Institute co-author of
 - **Big Data**
 - Social technologies
 - Disruptive technologies
 - Internet matters
- 2. **35 McKinsey Quarterlies**
- More than 50 academic research publications, e.g., in Management Science, European Economic Review
- 4. Business interviews, e.g., in Le Monde, The Economist, Business Week, Fortune
- Multiple books of which *Managing media companies*, Wiley 5. (ed)., coauthored with Annet Aris

In need of a disruptive future

2. The next 12

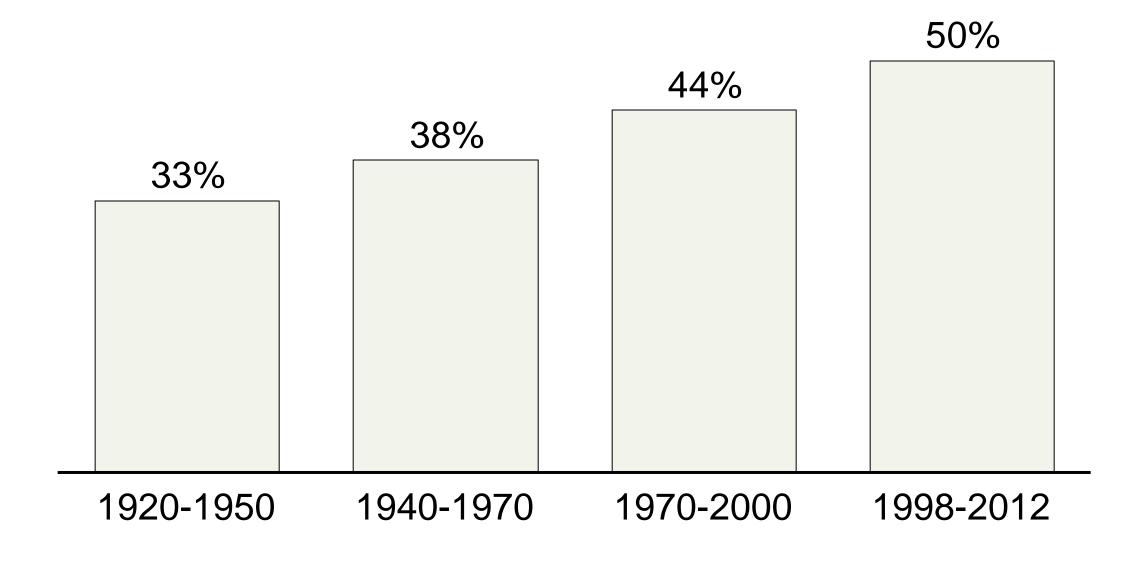
3. What to make out of it



Growth take-off

GDP per world capita

In real USD



1760s to 1840s

SOURCE: Angus Maddison's "World Population, GDP and Per Capita GDP, 1-2003 AD"; Projection based on Global Insight economic data; WIPO IP Statistics

Disruptive technology as engine of growth

% contribution of technology change to world output growth

How? Predicting is hard especially the future

"We do not like their sound, and guitar music is on the way out"

– Decca, 1962

"640 k ought to be enough for everybody"

- Bill Gates, 1981

"There is absolute no reason why people would want a PC in their home"

– DEC, 1977

"Louis Pasteur's theory of germs is ridiculous fiction"

> – Pierre Pachet, Professor at **University of Toulouse, 1872**

"I suppose we shall soon travel by air-vessels, and at length find our way to the moon in spite of he want of atmosphere"

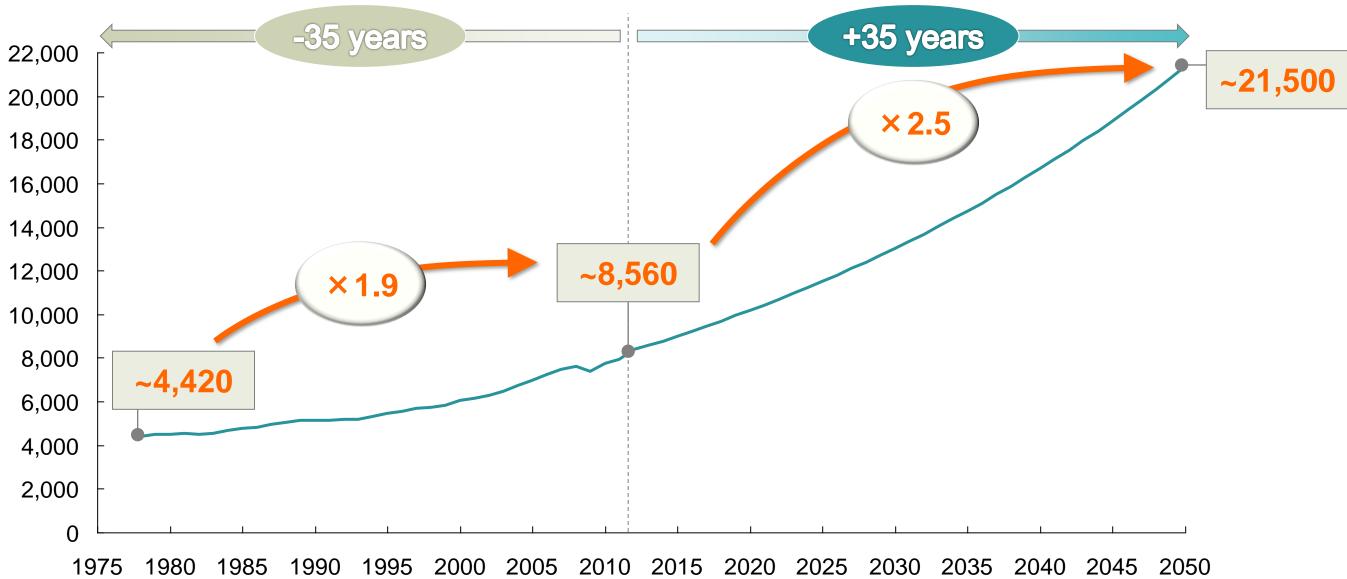
– Lord Byron, 1882

Predicting the future is hard, especially the future (continued)

We've stopped solving big problems. Meet the technologists who refuse to give up. p26

More than half of local online populations engage in social networking.

North America	North America		Europe		Middle East & Africa		Asia Pacific	
		-		- 1		A real		
Canada 94% United States 98%	Argentina Brazil Chile Colombia Mexico Peru Puerto Rico Venezuela	96% 97% 94% 96% 96% 90% 96%	Austria Belgium Denmark Finland France Germany Ireland Italy Netherlands Norway	86% 93% 94% 91% 90% 95% 93% 94% 89%	Israel South Africa	94% 88%	Australia China Hong Kong India Indonesia Japan Malaysia New Zealand Philippines Singapore	96% 53% 93% 95% 94% 58% 94% 95% 95% 96% 94%
Percentage of Online Population Using Social Networking around the World* % Reach of Online Population * Data is based on the 43 countries on which comScore reports individually.			Poland Portugal Russia Spain Sweden Switzerland Turkey United Kingdom	95% 96% 88% 98% 93% 90% 96% 98%			South Korea Taiwan Vietnam	879 949 859



Source: comScore Media Metrix, October 2011

The future is exponential

GDP per world capita

In real USD

SOURCE: Angus Maddison's "World Population, GDP and Per Capita GDP, 1-2003 AD"; Projection based on Global Insight economic data; WIPO IP Statistics

7

Back to future in 1978: The First Portable Music Player by Nobutoshi Kihara (Sony)

The 1978 quote: *"The invention of the* Walkman revolutionized the way that people can enjoy music: on the go!"

Survey 2013: « What do you think of the walkman? Response: 97% think it is dumb

SOURCE: Managing product families: The case of the Sony Walkman

Back to future in 1978: The First Handheld Cell Phone by Martin Cooper (Motorola)

The 1978 quote: *"The invention of* the cell phone revolutionized the way that people and companies communicate: quickly, anywhere, anytime! "

Survey 2013: « What do you think of this handheld cell phone? Response: 97% think it is uncool; 98% would not think this is portable; 82% are horrified by the size and look

SOURCE: Mobile telephone history

And more

The computer in your smart phone today is ...

times cheaper ... **1,000** times more powerful ... and about 100,000times smaller ...

... than the first one computer at MIT in 1965

Disruptive technology defined

High rate of technology change (in ۲ terms of cost or performance)

OR

Significant increase in the rate of ۲ technology change

Rapid technology change

Large economic value at stake

- Potential to impact large pools of ۲ economic value by 2025

Measurable in economic terms by 2025

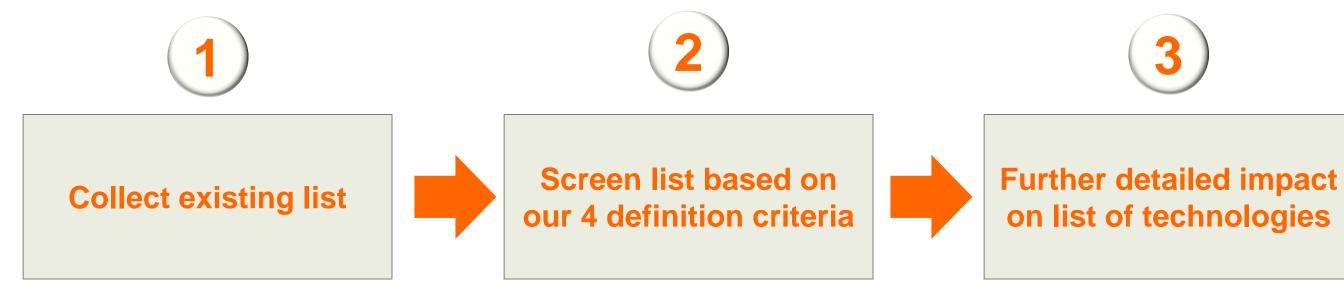
SOURCE: McKinsey Global Institute analysis

Potential to touch the lives of billions of people or millions of workers

AND

Potential to impact multiple sectors

Economically disruptive technology


Extensive reach of technology impact

Transformative potential impact

- Potential to significantly change people's jobs and lives (day-to-day, health, and environment) OR
- Large portion of impact and disruption in the next 10 years

Not only economic, but societal

Not a prediction, but a careful selection

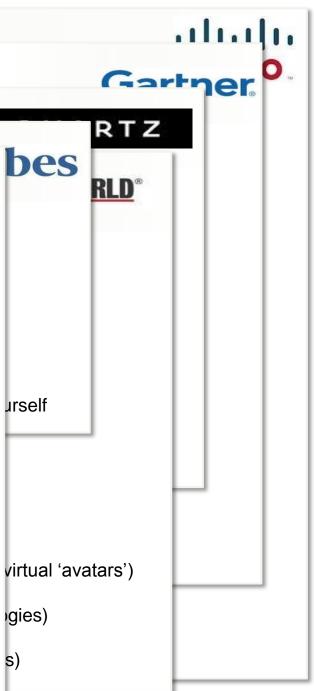
- *Hype* list built up, through various sources:
 - Media
 - Academic intelligence ____
 - Business intelligence
- Reviewed by external experts+ McKinsey expertise

- Speed of technology diffusion
- Impact (breadth & size)
- Measurable in GDP activity and more
- Disruptive nature (value) chain, consumer)

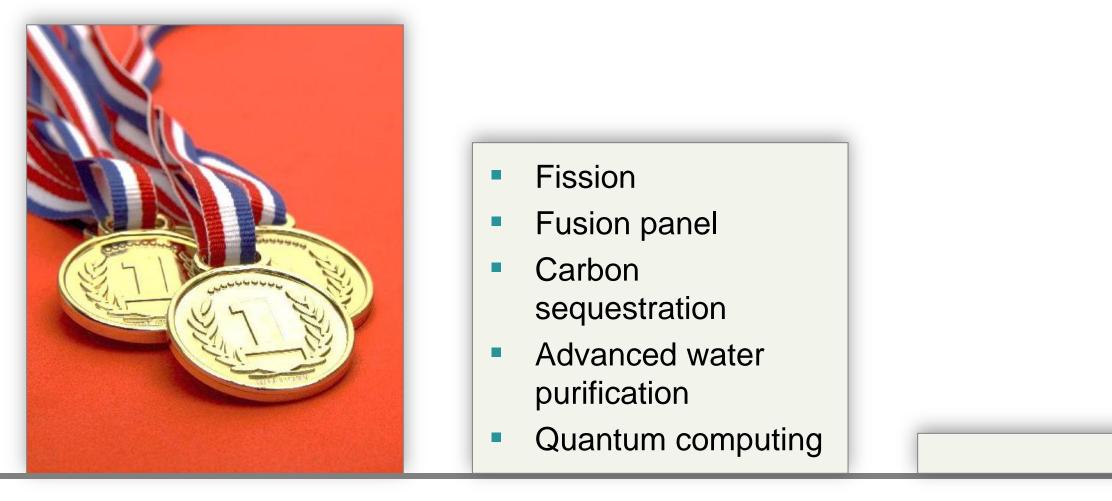
- Detail by industry
- - Employees
 - Consumers

Taxonomy of impact Entrepreneurs Governments, etc.

1. Why and how


2. The next 12

3. What to make out of it



Technology trend "lists" everywhere

Tor Eight great tech			aina technologia		10 Disruptive Te The five most disruptive	-
 I E Big data rev E T Satellites an T Robotics and 	fc '	The top twe	World of 2020	ons for the Digital 10 breakthrough technologies 2013	MIT Technology Review	OPSCI
E Life sciences I Regenerativ E Agri-science E Advanced m	1 1 1	 The Intern Flatter org 3D printing Nano-tech 	Connecting thVirtual Hospit	Temporary social mediaPrenatal DNA screening		
 E Energy and Volume two years By 2010, 35 billic By 2020, there w With IPv6, there y By 2020, univers In the next five y By 2025, teleportation 	1 1 1	 Mobile apţ The fight for system Reinventir The fall an 	 Ultra-Intellige New Image a Improved Cal 	 Memory Implants 		an brain
 By 2030, artificial ir 	n		rs cease to exist become an issue	Big Data from Cheap PhonesSupergrids		

We focused our work on an original list of 100 contenders

12 winners

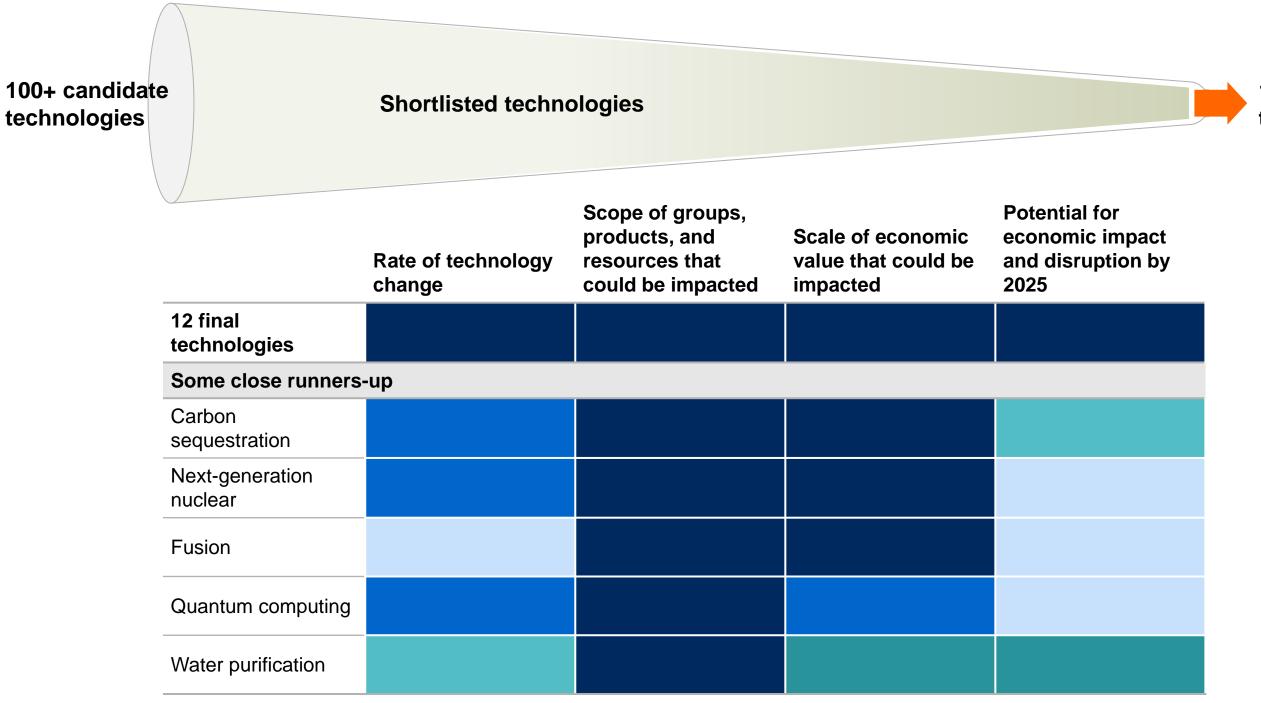
All 83 others reviewed 5 close contenders

16

And the winners are? A few tips

"We see computers everywhere, not in statistics" Technology disruptions can be visible (e.g. cost decrease by 50% in one year, etc), yet it usually takes time to percolate and penetrate all sectors of life/economy

"The internet economy is barely 3% of GDP but we can't live without it"


Major technology disruption affects as much user surplus as economic activity

"Technology without science and funding will not be called technology"

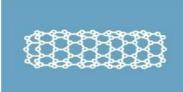
Internet ancestor, the Arpanet was a publicly funded project

And the winners are? A few tips

12 final technologies

Why not a winner – examples

Transformative alternative to digital computers but breadth of its applicability remains uncertain and time frame of commercialization not solid to have likely meaningful and broad impact by 2025


Limited to a few applications in next 10 years like space tourism and private satellite launch- even much larger impact afterwards, e.g., asteroid mining, etc.

Why a winner – Example Changing the basic building blocks of everything

Next-generation genomics

Fast, low-cost gene sequencing, advanced big data analytics, and synthetic biology ("writing" DNA)

Advanced materials

Materials designed to have superior characteristics (e.g., strength, weight, conductivity) or functionality

So ... The Disruptive Dozen: Speed, Scope, and Economics at stake

IT and how we use it

Mobile Internet

Increasingly inexpensive and capable mobile computing devices and Internet connectivity

Cloud technology

Use of computer hardware and software resources delivered over a network or the Internet, often as a service

Internet of Things

Networks of low-cost sensors and actuators for data collection, monitoring, decision making, and process optimization

Automation of knowledge work

Intelligent software systems that can perform knowledge work tasks involving unstructured commands and subtle judgments

The Disruptive Dozen: Speed, Scope, and Economics at stake

IT and how we use it

Mobile Internet

Increasingly inexpensive and capable mobile computing devices and Internet connectivity

Machines working for us

Cloud technology Use of computer hardw

the Internet, often as a

Internet of Things Networks of low-cost se decision making, and p

Automation of knowle Intelligent software sys unstructured command

o d

Advanced robotics

Increasingly capable robots with enhanced senses, dexterity, and intelligence used to automate tasks or augment humans

Autonomous and near-autonomous vehicles

Vehicles that can navigate and operate with reduced or no human intervention

3D printing

Additive manufacturing techniques to create objects by printing layers of material based on digital models

The Disruptive Dozen: Speed, Scope, and Economics at stake

IT and how we use it

Mobile Internet

Increasingly inexpensive and capable mobile computing devices and Internet connectivity

Machines working for us

A

0

Cloud technology Use of computer hardw the Internet, often as a

Internet of Things Networks of low-cost se decision making, and p

Automation of knowle Intelligent software sys

unstructured command

Rethinking energy comes of age ()+ h

Advanced robotics

Energy storage

Increasingly capable robots with enhanced senses,

dexterity, and intelligence used to automate tasks or

Devices or systems that store energy for later use, including batteries

Advanced oil and gas exploration and recovery

Exploration and recovery techniques that make extraction of unconventional oil and gas economical

Renewable energy

Generation of electricity from renewable sources with reduced harmful climate impact

The Disruptive Dozen: Speed, Scope, and Economics at stake

IT and how we use it

Mobile Internet

Increasingly inexpensive and capable mobile computing devices and Internet connectivity

Machines working for us

V

h

А

0

Cloud technology Use of computer hardw the Internet, often as a

Internet of Things Networks of low-cost se decision making, and p

Automation of knowle Intelligent software sys

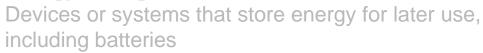
unstructured command

Advanced robotics

RY47YE

Increasingly capable robots with enhanced senses, dexterity, and intelligence used to automate tasks or

Rethinking energy comes of age


0

R

G

re

Energy storage

Changing the building blocks of everything

Next-generation genomics Fast, low-cost gene sequencing, advanced big data analytics, and synthetic biology ("writing" DNA)

Advanced materials

Materials designed to have superior characteristics (e.g., strength, weight, conductivity) or functionality

se,

Disruption in number (1/2)

		Technology improvement/difference example	Disrupted
Ŕ	Mobile internet	 6x growth in sales of smart wireless devices since 2007 	4.3 billi the web
	Automation of work	 100% increase in computing power from IBM's Deep Blue to Watson 	230 mil workers
	Internet of Things	80-90% reduction in sensor cost per year	100 mil devices
	Cloud	 300%- the ratio of cost of owning versus renting a server 	80% lar Cloud te
	Advanced robotics	 85% lower price for a Baxter versus average industrial robot 	250 mil surgerie
	Near autonomous driving machines	 300,000 miles driven by Google autonomous car without accident 	1 billion

ed pools

llion people connected to

illion knowledge

rs

illion M2M B2B industrial

es

arge companies adopting tech

illion annual major

ries

on trucks globally

Disruption in number (2/2)

		Technology improvement/difference example	Disrupted
<u>()+</u> -)	Energy storage	40% price decline ion-lithium battery cost	 1.2 billi electrici
A Compare	Advanced oil & gas	 3x increase in efficiency 	30 billio produce
4 4	3D printing	 90% price decline in 4 years 	11 tiillio industry
美学	Renewable energy	19x growth in solar photovoltaic capacity	 13 billio emissio
	Next-generation genomics	 10 months – time to double sequencing speed per US dollar 	 30 milli diabetes cardiova
	Advanced materials	 115x - strength to weight ratio of carbon nanotubes versus steel 	8 millio silicon o

ed pools

llion people without city

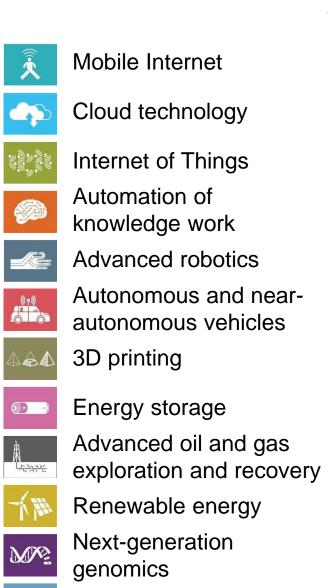
lion barrels of crude oil ced globally

l<mark>ion</mark> global manufacturing ry

lion tons of CO_2

llion people dying from

es, cancer,

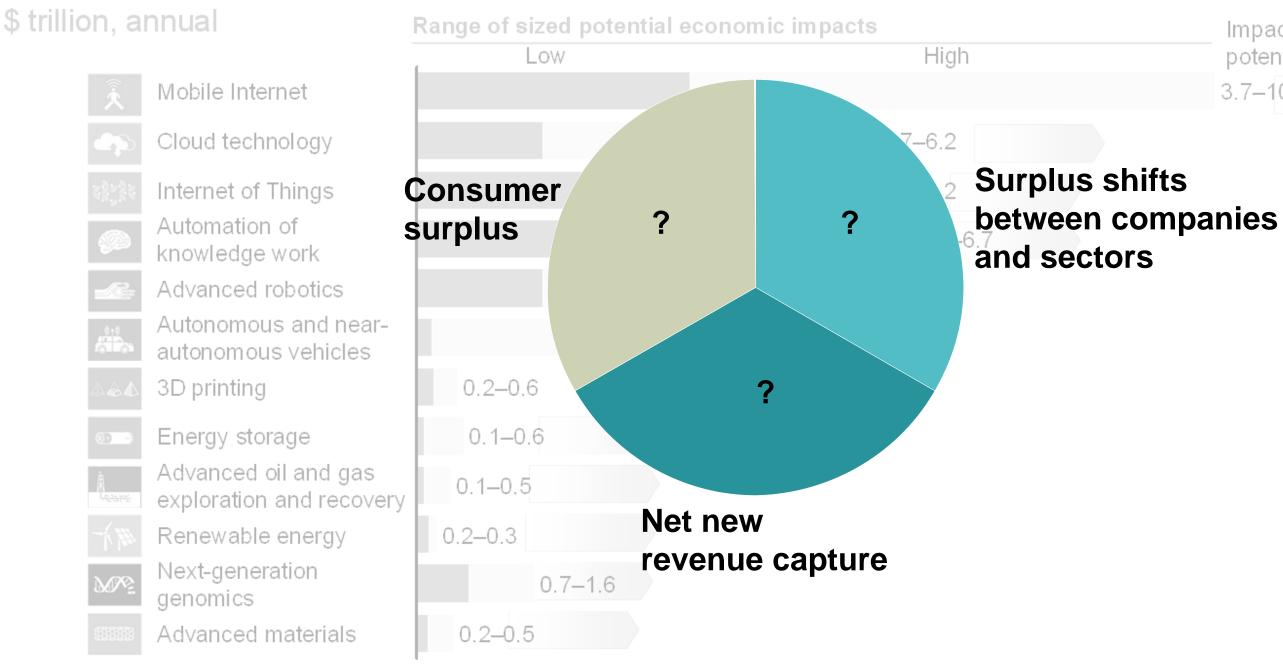

vascular disease

ion tons –annual global

consumption

Economic Potential – Sized applications in each category by 2025

\$ trillion, annual

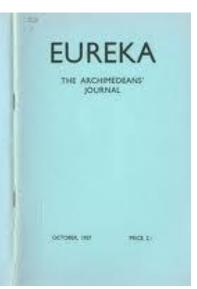

Advanced materials

Range of sized potential economic impacts High Low 1.7-6.2 2.7-6.2 5.2-6.7 1.7-4.5 0.2 - 1.90.2-0.6 0.1-0.6 0.1–0.5 0.2-0.3 0.7–1.6 0.2-0.5

Impact from other potential applications 3.7-10.8

Economic Potential – The Competing Claims

Impact from other potential applications 3.7-10.8


Agenda

1. Why and how

2. The next 12

3. What to make out of it

Five interesting insights

If all disruptions fully materialize, they will produce close of half of expected tech-enabled productivity increase by 2025

About an average potential of USD 15 trillion of nominal productivity gain by 2025, or roughly USD 6 trillion of volume productivity increase .USD 6 trillion versus USD 14 trillion of technical change contribution to world GDP

Significant power law in tech impact

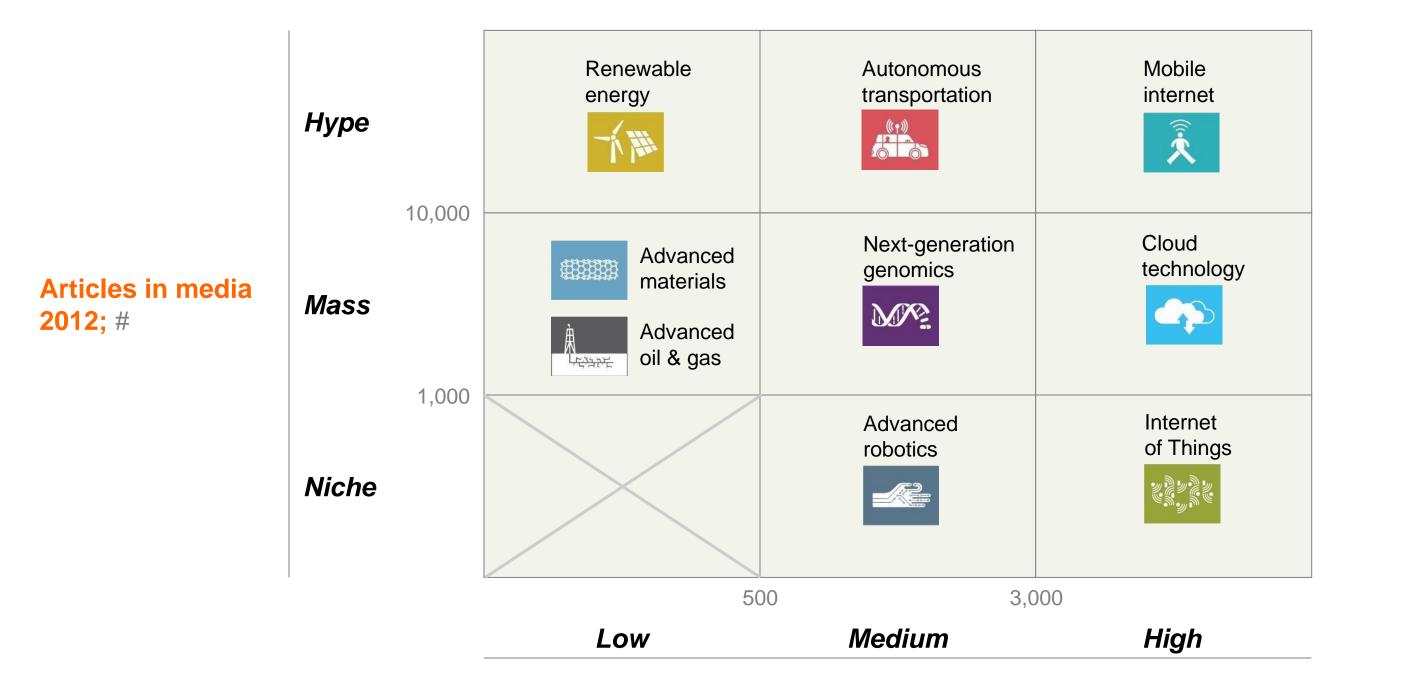
Top 2 disruptions = 20%, top 5 = 35%, top 10 = 43%, etc.

Social Hype does not necessarily anticipate impact

Poor correlation in media coverage of technologies and their impact

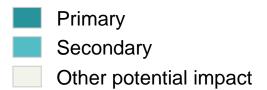
Benefits still to be in favor of developed countries

60% of impact accruing to developed economies



People matter

Largest impact arises when tech impacts a broad set of consumers and employees


Hype versus impact

Impact ; billion US by 2025, nominal

The world will keep changing For individuals, businesses and economies

	Implications for individuals and societies	S		Implications for entrepreneurs	Implications for established businesses and other organizations			
	Changes quality of life, health, and environment	Changes patterns of consumption	Changes nature of work	Creates opportunities for entrepreneurs	Creates new products and services	Shifts surplus between producers or industries	Shifts surplus from producers to consumers	Changes organizational structures
Mobile Internet								
Cloud technology								
Internet of Things								
Automation of knowledge work								
Advanced robotics								
Autonomous and near- autonomous vehicles								
3D printing								
Energy storage								
Advanced oil and gas exploration and recovery								
Renewable energy								
Next-generation genomics								
Advanced materials								

Thank you!

Download our reports www.mckinsey.com/mgi

@ McKinsey_MGI

www.facebook.com/ McKinseyGlobalInstitute

McKinsey Global Institute

