Deutsche Bank Markets Research

Industry China's Coal to **Olefins Industry**

2 July 2014 Asia China

Date

Energy Chemicals

David Hurd, CFA Shawn Park

Research Analyst (+852) 2203 6242 (+82) 2 316 8977 david.hurd@db.com shawn.park@db.com

Research Analyst

James Kan

Research Analyst (+852) 2203 6146 james.kan@db.com

F.I.T.T. for investors

Coal, to Syngas, to Methanol, to **Olefins**

Only in China

Converting China's coal into olefins (ethylene and propylene) is a multi-step, multi-industry process. Coal is first converted to syngas; syngas is then converted to methanol; methanol is thereafter converted to olefins. In this FITT report we look through the chain of China's coal-toolefins industry by focusing largely on the economics and processes involved. In subsequent FITT Reports we will also consider China's coal-to-urea, coal-to-liquids and coal-to-syngas industries. Globally, only China uses coal to make industrial quantities of urea, methanol and now potentially, olefins.

Deutsche Bank AG/Hong Kong

Deutsche Bank does and seeks to do business with companies covered in its research reports. Thus, investors should be aware that the firm may have a conflict of interest that could affect the objectivity of this report. Investors should consider this report as only a single factor in making their investment decision. DISCLOSURES AND ANALYST CERTIFICATIONS ARE LOCATED IN APPENDIX 1. MCI (P) 148/04/2014.

Deutsche Bank Markets Research

Asia China Energy Chemicals

Industrv China's Coal to **Olefins Industry**

Coal, to Syngas, to Methanol, to Olefins

Only in China

Converting China's coal into olefins (ethylene and propylene) is a multi-step, multi-industry process. Coal is first converted to syngas; syngas is then converted to methanol; methanol is thereafter converted to olefins. In this FITT report we look through the chain of China's coal-to-olefins industry by focusing largely on the economics and processes involved. In subsequent FITT Reports we will also consider China's coal-to-urea, coal-to-liquids and coal-to-syngas industries. Globally, only China uses coal to make industrial quantities of urea, methanol and now potentially, olefins.

The economics

Using US\$ 110/ bbl naphtha to produce olefins is expensive (US\$ 1,185/ ton); using US\$ 42/ ton coal from Inner Mongolia is less expensive (US\$ 640/ ton); but using US\$ 5/ mmBtu natural gas from North America / Middle East is the least expensive (US\$ 338/ ton) way to produce olefins. It's a slow moving train, but its coming as N. America starts to add low cost shale-gas-to-olefin capacity 2017-18e. As China sets out to build its uniquely-China coal-to-olefins industry, we contemplate the long-term contradictions of: 1) China's coal-toolefin industry displacing its naphtha-to-olefin industry; and 2) China's push to find its cheap shale gas only to displace its various coal-to industries.

Conclusions and potential beneficiaries

We suspect: 1) the NDRC's ambitious time table for Coal-to-Olefin and Coal-to-Methanol (CTO/ CTM) development in China (Appendix 1-2) will take longer to implement than designed; and 2) shale gas in China will also develop at a snail's pace and thus be less transformational, due to a lack of competition in the market and various price controls throughout the system. Yingde Gases (2168 HK – Buy) has been a primary beneficiary of China's developing CTO/ CTM industry. Starting from a low base, even a slower development pace than Plan should support Yingde's growth. Sinopec Corp. (386 HK) has six CTO (2), MTO (3) and/ or GTO (1) projects, with 1 already operating and 2 scheduled for start-up in 2016e. The risk to these projects is an abundance of low cost shale gas coming to China anytime soon; we suspect this is not going to happen. The lack of success globally in developing Coal-to-MEG technology has led us to reiterate our Buy ratings on Nan Ya Plastics (1303 TT - Buy) and Lotte Chemicals (011170 KS - Buy); both benefit from higher MEG prices in Asia.

Valuation and risks

We value most of our commodity companies on a discounted cash flow model. The DCF model allows for the input of differing commodity prices over a multi-year period. The Hong Kong stock market trades mostly off of PE valuations and as a result, we will use both longer term (DCF) and shorter term (PE) valuation metrics to assess the value of most of our companies. The principal risk to China's CTO/ MTO build out ironically comes from China's drive to find its very own cheap, abundant shale gas. Coal-to-olefins is not cost competitive relative to cheap natural gas-to-olefins. We expect delayed implementation of China's CTO/ MTO build out vs. the 5-Year Plan (2011-15e) due to on-going debates in Beijing surrounding scarcity of water, air pollution and the economics of coal-to-chemicals.

Deutsche Bank AG/Hong Kong

Deutsche Bank does and seeks to do business with companies covered in its research reports. Thus, investors should be aware that the firm may have a conflict of interest that could affect the objectivity of this report. Investors should consider this report as only a single factor in making their investment decision. DISCLOSURES AND ANALYST CERTIFICATIONS ARE LOCATED IN APPENDIX 1. MCI (P) 148/04/2014.

Date 2 July 2014 **FITT Research**

David Hurd, CFA

Shawn Park Research Analyst Research Analyst

(+852) 2203 6242 (+82) 2 316 8977 david.hurd@db.com shawn.park@db.com

James Kan

Research Analyst (+852) 2203 6146 james.kan@db.com

Table Of Contents

Executive summary Full of contradictions – just like China	3
Introduction	10
Some of the basics	10
China – unlocking energy value differentials	13
China's coal markets	13
What is coal?	22
Syngas	.26
Coal gasification -	
Equipment used in the coal-to-syngas process	33
Methanol	. 38
What is it?	
Methanol synthesis from syngas	
The Syngas to methanol (vapor) reaction:	
More about the catalysts	58
Methanol refining:	58
Methanol production costs	59
Coal to olefins	. 67
Ethylene	69
Propylene	70
Producing ethylene & propylene	70
Converting methanol to olefins:	72
Olefins synthesis and catalyst re-generation:	73
Olefins separation	74
MTO technology(s) found in China	76
The Catalyst for methanol-to-olefins (SAPO-34)	82
Financials	83
Water & Pollution	90
Water scarcity in China (Figure 95)	90
Water usage in China	91
China's water resource location vs. usage	91
Water use comparisons by product	91
Emissions	93
CTO emissions:	95
Emission from Syngas production process	98
Listed companies / DB rating as mentioned in FITT report	99

Executive summary

Full of contradictions - just like China

Only China produces industrial amounts of urea from coal. Producing urea from coal is expensive. China is the world's largest producer of urea (38% of global supply) **despite** being its principal high-cost producer (Figure 1). We suspect that China's urea production is at risk to increasing amounts of cheap global natural gas (urea) from the Middle East (associated gas), North America (shale gas), Africa (associated gas) and potentially even China itself (shale gas).

Producing urea from coal is expensive (US\$ 250-300/ ton). Producing urea from natural gas is cheap (US\$ 100-150/ ton). Will China be pushed off the Urea cost curve any time soon? Time is a relative concept; it may take 20-years for cheap gas to spread around the world; or 10-years for cheap gas to become more expensive particularly out of North America. It's a balancing act.

Source: Fertecon; Deutsche Bank

In its most recent 5-Year Plan (2011-15), the Chinese government laid out an aggressive time table for development of its coal-to-olefins (CTO), coal-to-syngas (CTG) and methanol-to-olefins (MTO) industries (Appendix 1-3).

The economics of China coal-to-olefins (ethylene / propylene) **is competitive** relative to the world's naphtha-to-olefins industry (Figure 2, Figure 20 & Figure 92-93). The world's naphtha-to-olefins industry is Asia-based. Ninety percent

(90%) of Asia's olefin (ethylene) capacity uses naphtha as a feedstock (Appendix 6-10). Asia produces 34% of global ethylene. A fast-growing China CTO industry would displace its own naphtha to olefins industry (24% of global ethylene capacity). Somehow, this strategy does not make much sense; although it would produce short-term China GDP growth.

The economics of China coal-to-olefins however **is not competitive** relative to a growing North American and Middle Eastern natural gas-to-olefins industry (Figure 2, Figure 20, and Figure 94). From a cost perspective, a fast-growing China CTO industry would displace its own naphtha to olefins industry but then be displaced itself by a lower-cost North American and Middle Eastern natural gas-to-olefins industry. Somehow, this strategy makes even less sense; except for the fact that it creates plenty of China GDP by both building and then dismantling multiple China industry chains.

China's coal-to-olefins and / or coal-to-urea do not make economic sense in a world awash in low-cost natural gas. Notwithstanding, China continues to grow its coal-to industries; maybe on the prospect that the world's growing supplies of cheap natural gas could be short-lived.

Figure 2: Worldwide production cost of olefins by feedstock

Source: Company data;, IHS, Deutsche Bank

The production of olefins from coal requires an abundance of water (Figure 98) and produces an abundance of CO_2 emissions (Figure 102). The addition of one 600k tpa CTO facility in Beijing would increase provincial CO_2 emissions by 14%. China's abundant water resource (Figure 95) is located in the South and South West part of the country; its coal resources are located in the North and North West part of the country (Figure 11-12) – bad luck.

The world does not use coal to produce industrial quantities of olefins, or urea, or methanol, or synthetic natural gas (syngas) - only China uses its coal for these purposes. China is currently the world's largest producer of both urea and methanol ("Methanol" pages 38-66) and it's all done with coal. (South Africa uses coal to produce "liquids", principally diesel and gasoline; as did Germany during World War II.) China's current CTO/ MTO operating capacity is a tiny 0.6 / 1.76 mln tpa respectively or 0.4% / 1.7% of global ethylene and propylene capacity (153.2 / 103.0 mln tpa). China's CTO/ MTO capacity (256.2 mln tpa). Yet, China's NDRC has approved an additional 6.9 mln tpa and "pre-approved" 13.4 mln tpa of CTO/ MTO capacity (Appendix 1-2) and caught the world's attention. If it weren't for China's world-scale, high(er) cost coal to urea and methanol industries, we would ignore China's recent hype about building millions of tons of CTO/ MTO capacity over the next few years.

Given ongoing debates at the highest levels of Chinese government about CO_2 emissions and water scarcity; as well as ongoing debates about infrastructure spend and industrial overcapacity, we estimate that China could add 4.1 mln tps of MTO capacity (Figure 51) and 4.5 mln tpa of CTO capacity (Figure 75) through 2018. This would represent 42% of the NDRC's approved and pre-approved CTO/ MTO projects as contemplated in its 5-Year Plan (2011-15). It's a start; but we suspect it may prove to be a very slow start relative to Plan.

Bottom line, we are skeptical of China building a global scale coal to olefins industry over the coming decade. We look at the economics of coal to olefins relative to natural gas to olefins and wonder where to with China's shale gas revolution; we consider the CO_2 emissions and question the government's sincerity about cleaning up the environment; and then we consider China's water scarcity and question if China has enough water to "frac" its way to abundant shale gas and build a global CTO industry all at the same time.

Commercial prospects

The industrial gas (oxygen) requirement of a coal-to-olefins plant is 2.5 times more than that of a comparable steel production facility. A 600k Tpa coal-to-olefins production facility requires oxygen capacity of 8,500 mcf / hour vs. 3,400 mcf / hour for a similar sized steel production facility. In our opinion, Yingde Gases (2168 HK – Buy) has clearly been and should continue to be the primary beneficiary of China's push into coal-to-chemicals.

In 2010, Yingde received a 240k Nm³/ hour contract from the Shenhua Group to supply its Shenhua Baotou coal-to-olefins project. The Shenhua contract increased Yingde's outstanding oxygen capacity by 56% off a (low) base of 421k Nm³/ hour year-end 2009. In November 2013, Yingde received a second 240k Nm³/ hour contract from China Coal Group (Parent company) for its CTO project in Shannxi province due on line 2016e. At the time of signing, Yingde had 1.33 mln Nm³/ hour of oxygen capacity. Yingde has been a clear beneficiary so far of China's push into coal-to-chemicals. Hangzhou Hangyang (002430 CH – Non-rated) is China's largest producer of Air Separation Units (ASUs). According to Guangdong Oil & Gas Association, Hangzhou Hangyang holds more than 40% market share in China's ASU market.

Royal Dutch Shell (RDSA LN – Hold); Siemens (SIE GY – Buy); KBR Inc (KBR US – Buy) and General Electric (GE US – Buy) all supply coal gasification units to China and worldwide. Shell's (SCGP) technology is the most widely used coal-to-syngas process. Shell started its coal gasification technology in 1976 and has been licensing its technology in China since 2000. Up to 1H2013, Shell had 21 coal gasification units operating in China; the majority of these units are used for producing coal-based urea and methanol.

China's methanol industry is world scale. China's methanol capacity (49.4 mln tons) represents 51% of global capacity (Figure 53 / Appendix 4-5). However, methanol production in China is highly fragmented with the top 10 Chinese producers representing only 28% of total capacity. Data from Baidu-Wenku leads us to believe that China has some 300 to 350 known producers of methanol with untold numbers of "tea-pot" producers. Only three of China's top ten methanol producers are publically-listed companies: China BlueChemical (3983 HK – NR); Kingboard Chemicals (148 HK – NR) and Shandong Jiutai Chemical (CEGY SP - NR). Petronas Chemicals (PCHEM MK – Hold) is a large Malaysian producer of methanol and other petrochemicals.

China's 12th 5-Year Plan (2011-15) was officially released in May 2011. On the back of the excitement surrounding this 5-Year Plan and the indicated build up in China's CTO/ CTM industry, the Honk Kong Stock Exchange entertained two IPO listings from EPC (Engineering Procurement and Construction) companies: 1) Wison Engineering (2236 HK); and 2) Sinopec Engineering (2386 HK – Buy). We expect these two companies to grab the lion's share of CTO/ MTO construction contracts in China.

The price of MEG is the main share price driver for Nan Ya Plastics (1303 TT – Buy) with a correlation of 84%. Despite a relatively low sales contribution (19%), we believe NYP is the key MEG play in the Asia region. There are limited chemical companies with MEG exposures in Asia, while NYP is the second-largest MEG producer globally. Based on our supply demand outlook, we expect MEG prices to expand by 13% in the next two years due to tight supplies. This should bode well for NYP's fundamentals and share price. We believe that the lack of successful Coal-to-MEG technology globally will keep the Chinese out of this market and therefore support global MEG prices.

Lotte Chemicals (011170 KS – Buy) owns / operates 1.1mtpa of MEG capacity. MEG provides Lotte with up to 40% of its operating profit, which is one of the highest in the region. Considering 63% share price correlation to MEG price, Lotte Chemical also looks well positioned to benefit from improving MEG fundamentals as CTMeg developments continue to disappoint.

Of the companies mentioned above and in Appendix 19, we believe Yingde Gases (2168 HK – Buy) is the most levered to China's developing CTO industry.

Model updated:24 June 2014

Running the numbers

Yingde Gases

Reuters: 2168.HK

Price (25 Jun 14)

52 Week range

Market Cap (m)

Company Profile

Target Price

Asia

Buy

Hong Kong

Chemicals

	5						
	Fiscal year end 31-Dec	2011	2012	2013	2014E	2015E	2016E
	Financial Summary						
	DB EPS (CNY)	0.46	0.43	0.50	0.58	0.63	0.68
	REPORTED EPS (CNY) DPS (CNY)	0.46	0.43	0.50	0.58	0.63	0.68
	BVPS (CNY)	2.8	3.0	3.4	3.8	4.2	4.7
	Weighted average shares (m)	1,807	1,807	1,807	1,807	1,807	1,807
	Average market cap (CNYm)	10,845	11,166	11,399	12,285	12,285	12,285
Bloombera: 2168 HK	Enterprise value (CNYm)	12,830	15,748	18,381	21,085	21,771	22,038
	Valuation Metrics						
	P/E (DB) (x) P/E (Beported) (x)	13.1	14.5 14.5	12.6	11.8	10.7	10.0
HKD 8 46	P/BV (x)	2.38	2.11	12.0	1.79	1.61	1.45
HKD 9 60	FCF Yield (%)	nm	nm	nm	nm	0.1	3.7
	Dividend Yield (%)	2.2	2.4	2.9	3.1	3.4	3.6
TIKD 0.45 - 0.00	EV/Sales (x)	3.0	3.2	2.7	2.4	2.1	1.9
HKDm 15,286	EV/EBITDA (x)	9.4	10.9	9.1	8.2	7.4	6.8
USDm 1,972	EV/EDIT (X)	11.9	14.0	12.2	11.5	10.7	10.2
	Income Statement (CNYm)						
l goo producer in Chine	Sales revenue	4,240	4,956	6,866	8,854	10,498	11,680
i gas producer in crima.	Gross profit FRITDA	1,730	1,931	2,656	3,370	3,900	4,259
	Depreciation	276	348	496	723	2,350	1,042
	Amortisation	4	9	9	9	9	9
	EBIT	1,080	1,081	1,508	1,833	2,036	2,168
	Net interest income(expense)	-110	-191	-303	-456	-529	-544
	Exceptionals/extraordinaries	0	-4	-20	-10	0	0
	Other pre-tax income/(expense)	11	20	18	18	18	18
	Profit before tax	981	907	1,203	1,386	1,525	1,642
	Income tax expense Minorities	146	136	294	339	373	401
	Other post-tax income/(expense)	0	0	0	0	0	0
	Net profit	831	770	907	1,045	1,150	1,238
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	DB adjustments (including dilution)	0	0	0	0	0	0
∾ ~~~~	DB Net profit	831	770	907	1,045	1,150	1,238
	Cash Flow (CNYm)						
3Sep 13Dec 13Mar 14	Cash flow from operations	975	919	1,265	2,738	2,640	2,789
	Net Capex	-2,177	-3,778	-2,691	-3,900	-2,625	-2,336
IG SENG INDEX (Rebased)	Free cash flow	-1,203	-2,859	-1,426	-1,162	15	453
	Dividends paid	-181	-241	-271	-325	-375	-412
	Net inc/(dec) in borrowings	1,284	2,928	885	1,500	1,000	0
	Other investing/financing cash flows	-204	-245	579	0	0	0
	Net cash flow Change in working capital	-303 -120	-418 796	-233 -487	13 638	640 259	41
		120	,00	407	000	200	0
	Balance Sneet (CNYM)	050	1 050	0.40	00	050	07
	Cash and other liquid assets	958	9 761	342	36 15 128	352	87 18 1/12
14E 15E 16E	Goodwill/intangible assets	62	59	57	57	57	57
EBIT Margin	Associates/investments	400	745	685	675	675	675
	Other assets	2,336	2,879	3,516	3,720	4,106	4,383
	lotal assets	9,825	14,793	16,552	19,616	22,038	23,343
20	Other liabilities	1,491	2,631	2,418	3,260	3,904	4,383
	Total liabilities	4,821	9,246	10,322	12,664	14,308	14,787
10	Shareholders' equity	4,991	5,486	6,125	6,844	7,620	8,445
	Minorities	12 5 003	61 5 5 4 7	105	107 6 952	109	112 8 557
	Net debt	2,372	5,265	7,562	9,368	10,052	10,317
E 15E 16E	Key Company Metrics						
L IUL IUE	Sales growth (%)	/11 1	16.9	38 F	29.0	18.6	11 2
S) ROE (RHS)	DB EPS growth (%)	43.9	-7.3	17.2	15.2	10.1	7.6
	EBITDA Margin (%)	32.1	29.0	29.3	29.0	28.1	27.6
10	EBIT Margin (%)	25.5	21.8	22.0	20.7	19.4	18.6
12	Payout fatio (%) BOE (%)	28.3 17 g	35.2 14 7	35.9 15.6	35.9 16 1	35.9 15 q	35.9
	Capex/sales (%)	51.4	76.3	39.2	44.0	25.0	20.0

7.8

47.4

9.9

10.6

94.9

5.7

5.3

5.0

121.4

5.3

4.0

134.8

2.9

3.9

130.0

Yingde Gases is a leading industrial



- Yingde Gases -----HAN

Margin Trends



Growth & Profitability





David Hurd, CFA +852 2203 6242

david.hurd@db.com

Capex/depreciation (x)

Net debt/equity (%)

Net interest cover (x)

Source: Company data, Deutsche Bank estimates

Deutsche Bank AG/Hong Kong

Page 7

2.2

4.0

120.6

Model undated 19 June	2014
Woder updated. 15 Julie	2014
Running the numbers	
Asia	
Taiwan	
Chemicals	
Nan Ya Plastics	
Reuters: 1303.TW	Bloomberg: 1303 TT
Buy	
Price (25 Jun 14)	TWD 70.80
Target Price	TWD 81.00
52 Week range	TWD 56 30 - 70 80

TWDm 561,502

USDm 18,725

#### **Company Profile**

Market Cap (m)

Established in 1958 Nan Ya Plastics is one of the core members of the Formosa Plastics Group. The company has subsidiaries in China and the US and has exposures in downstream petrochemical (PET, MEG, BPA), plastics processing (films, plasticizers), electronic materials (epoxy, CCL) businesses. In addition to its core businesses, Nan Ya Plastics holds important equity investments in Formosa Petrochemical (6505 TT), Nanya PCB (8046 TT), Nanya Tech (2408 TT), and Mailiao Power (unlisted).





– Nan Ya Plastics – Taiwan Stock Exchange (TWSE) (Rebased)

Margin Trends



Growth & Profitability







Shawn Park +82 2 316 8977

shawn.park@db.com

Fiscal year end 31-Dec	2010	2011	2012	2013	2014E	2015E
Financial Summary						
DB EPS (TWD)	5.22	2.95	0.54	3.19	3.74	3.69
Reported EPS (TWD)	5.22	2.95	0.54	3.19	3.74	3.69
BVPS (TWD)	4.69	2.10 43.2	0.30 40.3	2.50	2.93	2.90
Maightad average shares (m)	7 052	7 05 2	7 050	7 021	7 021	7 021
Average market cap (TWDm)	495.781	581,155	456.659	483,935	561.502	561,502
Enterprise value (TWDm)	428,205	440,929	332,348	345,792	355,766	368,845
Valuation Metrics						
P/E (DB) (x)	12.1	25.1	108.3	19.1	19.0	19.2
P/E (Reported) (x) P/BV (x)	12.1	25.1	108.3	19.1	19.0	19.2
	0.5	7.0	4.7		10.0	
Dividend Yield (%)	8.5 7.4	2.8	4.7	4.1	4.1	3.3 4.1
FV/Sales (x)	13	13	11	1 1	11	11
EV/EBITDA (x)	7.6	8.9	11.6	11.2	11.9	11.0
EV/EBIT (x)	10.8	13.2	27.3	23.3	26.8	22.0
Income Statement (TWDm)						
Sales revenue	337,785	330,999	300,707	311,005	319,532	329,125
Gross profit	57,570	51,400	29,122	32,667	31,601	35,456
EBITDA	56,060	49,461	28,774	30,982	29,973	33,597
Amortisation	15,036	14,905	15,228	14,744	15,264	15,783
EBIT	39,548	33,393	12,170	14,823	13,295	16,784
Net interest income(expense)	-1,239	-741	52	-676	-661	-765
Associates/affiliates	0	0	0	0	0	0
Other pre-tax income/(expense)	0 11 810	662	-6 770	16 822	21 780	18 574
Profit before tax	50,118	33,314	5,453	30,969	34,415	34,593
Income tax expense	8,443	9,095	1,895	5,894	4,676	5,189
Minorities	701	1,076	-658	-197	114	113
Net profit	40.974	23.143	4.216	25.272	29.625	29,291
DB adjustments (including dilution)	0	0	.,			
DB Net profit	40,974	23,143	4,216	25,272	29,625	29,291
Cash Flow (TWDm)						
Cash flow from operations	56,792	52,181	36,310	25,427	90,219	32,211
Net Capex	-14,547	-10,497	-14,706	-7,780	-13,812	-13,812
Free cash flow Equity raised/(bought back)	42,245	41,684	21,605	17,646	76,407	18,399
Dividends paid	-15,274	-36,820	-16,473	-2,354	-19,827	-23,241
Net inc/(dec) in borrowings	32,818	30,664	21,367	54,670	395	11,261
Other investing/financing cash flows	-39,647	-43,874	-29,487	-70,756	-20,403	-41,851
Change in working capital	20,142 0	-8,347	-2,989	-794	30,573	-30,432 0
		-		-		
Balance Sneet (TVVDm)	00.000	00.004	<u> </u>	07 710	104.000	00.051
Tangible fixed assets	62,063 147 261	147 830	146 291	147 811	104,283	144 387
Goodwill/intangible assets	1,926	2,675	2,216	247	247	247
Associates/investments	106,853	102,892	96,299	128,058	159,818	191,577
Other assets	122,396	148,284	142,974	180,684	145,561	149,160
Interest bearing debt	460,499	470,364	451,616	524,510 162,378	163.003	172.297
Other liabilities	56,081	56,747	51,577	66,784	88,007	70,504
Total liabilities	165,438	193,129	193,872	229,163	251,009	242,800
Shareholders' equity	283,078	264,619	246,566	282,451	292,248	298,298
Total shareholders' equity	295.062	277.235	257.744	295.348	305.258	311.421
Net debt	27,294	67,698	78,459	94,668	58,720	103,446
Key Company Metrics						
Sales growth (%)	nm	-2.0	-9.2	3.4	2.7	3.0
DB EPS growth (%)	na	-43.5	-81.8	493.5	17.2	-1.1
EBITDA Margin (%)	16.6	14.9	9.6	10.0	9.4	10.2
Pavout ratio (%)	89.9	71.2	4.0 55.8	4.8 78.5	4.2 78.5	5.1 78.5
ROE (%)	15.4	8.5	1.6	9.6	10.3	9.9
Capex/sales (%)	4.4	3.2	5.3	2.8	4.3	4.2
capex/depreciation (x) Net debt/equity (%)	0.9 9 3	0.7 24.4	1.0 3∩⊿	0.5 32 1	0.8 19.2	0.8 33.2
Net interest cover (x)	31.9	45.0	nm	21.9	20.1	21.9

Source: Company data, Deutsche Bank estimates

12

13

Model updated:12 June 2014	Fiscal year end 31-Dec	2010	2011	2012	2013	2014E	2015E
Running the numbers	Financial Summary						
Asia	DB EPS (KRW)	24,667.92	30,701.19	10,196.17	9,037.35	10,939.45	14,988.65
South Korea	Reported EPS (KRW) DPS (KRW)	24,667.92	30,701.19	10,196.17	9,037.35 1.000.00	10,939.45	14,988.65 1.500.00
Chemicals	BVPS (KRW)	139,809.5	171,455.4	189,686.8	196,362.8	192,543.3	206,342.7
Lotte Chemical	Weighted average shares (m) Average market cap (KRWbn)	32 5.416	32 11.310	32 8.640	32 6,290	34 5.687	34 5.687
Beuters: 011170 KS Bloomberg: 011170 KS	Enterprise value (KRWbn)	5,252	10,824	8,165	5,895	5,197	4,590
	Valuation Metrics		11.0		01.0	10.0	11.0
Buy	P/E (DB) (x) P/E (Reported) (x)	6.9 6.9	11.6 11.6	26.6 26.6	21.8 21.8	16.3 16.3	11.9 11.9
Price (25 Jun 14) KRW 178,500	P/BV (x)	1.92	1.74	1.29	1.18	0.93	0.87
Target PriceKRW 210,000	FCF Yield (%) Dividend Yield (%)	13.8 1 0	9.4 0.5	nm 0 4	3.0 0.5	1.9 0 7	10.4 0.8
52 Week range KRW 130,500 - 235,500	EV/Sales (x)	0.4	0.7	0.5	0.4	0.3	0.3
Market Cap (bn) KRWm 5,687	EV/EBITDA (x)	3.4	5.8	9.8	5.9	5.6	4.2
USDm 5,584	EV/EBIT (x)	4.2	7.3	22.0	12.1	12.3	7.8
Company Profile	Income Statement (KRWbn)						
lotte Chemical is a vertically integrated petrochemical	Sales revenue Gross profit	12,403	15,700	15,903 1 247	16,439 1 411	14,997 1 384	15,480 1 566
company in Korea, with wide range of products including	EBITDA	1,553	1,870	832	994	929	1,097
polyethylene(PE), polypropylene(PP) and ethylene glycol (MEG) Lotte is the major shareholder with a 57% stake	Depreciation	285	376	457	505	505	505
and its affiliates include KP Chemical (PET producer) and	EBIT	1,263	3 1,491	372	2 487	422	2 590
Titan Chemical (Malaysia based petrochem company).	Net interest income(expense)	-18	-31	-28	-63	-61	-52
	Associates/affiliates	126	0	0	0	0	0
	Other pre-tax income/(expense)	-184	66	43	-49	134	140
	Profit before tax	1,187	1,526	387	375	495	678
Price Performance	Income tax expense Minorities	292	394 154	60 2	89 -2	120	164
280000 1	Other post-tax income/(expense)	0	0	0	-2	0	0
240000	Net profit	786	978	325	288	375	514
200000	DB adjustments (including dilution)	0	0	0	0	0	0
160000	DB Net profit	786	978	325	288	375	514
120000	Cash Flow (KRWbn)						
Jun 12Sep 12Dec 12Mar 13Jun 13Sep 13Dec 13Mar 14	Cash flow from operations	1,088	1,974	382	463	405	924
	Net Capex Free cash flow	-338	-913	-582	-274	-289 115	-289
	Equity raised/(bought back)	0	1,000	-200	-2	0	0000
Margin Trends	Dividends paid	-73	-65	-70	-34	-32	-41
16	Net inc/(dec) in borrowings Other investing/financing cash flows	-1 412	215 -147	125 -81	-352	-357	1/
12	Net cash flow	-201	1,062	-222	346	-234	614
	Change in working capital	-103	-3	-504	-537	-451	-69
	Balance Sheet (KRWbn)						
	Cash and other liquid assets	490	1,251	745	979	745	1,358
0 + 10 + 11 + 12 + 13 + 14E + 15E	Tangible fixed assets	3,771	4,308	4,421	4,187	3,947	3,708
FBITDA Margin	Goodwill/intangible assets	25 1 825	39 1 787	1 706	24 1 930	1 903	20
	Other assets	2,502	3,361	3,468	3,569	3,927	4,096
Growth & Profitability	Total assets	8,613	10,747	10,372	10,688	10,543	11,094
50 25	Interest bearing debt Other liabilities	1,620	1,858	1,935	2,476	2,118	2,135
40 20	Total liabilities	3,626	4,589	4,288	4,393	3,905	3,983
20 15	Shareholders' equity	4,454	5,463	6,043	6,256	6,600	7,072
10 10	Minorities Total shareholders' equity	532 4 987	695 6158	41 6 084	38 6 294	38 6 638	38 7 111
-10 5	Net debt	1,130	607	1,190	1,497	1,374	777
-20 -20 -20 -20 -20 -20 -20 -20 -20 -20	Key Company Metrics						
10 11 12 13 14L 15L	Sales growth (%)	44 3	26.6	13	34	-8.8	3.2
Sales growth (LHS) ROE (RHS)	DB EPS growth (%)	-9.7	24.5	-66.8	-11.4	21.0	37.0
Solvency	EBITDA Margin (%)	12.5	11.9	5.2	6.0	6.2	7.1
25 80	Payout ratio (%)	7.1	9.5 5.7	2.3 9.8	3.0 11.1	2.8 11.0	3.8 10.0
20	ROE (%)	19.2	19.7	5.6	4.7	5.8	7.5
15	Capex/sales (%)	3.0	5.9	3.8	1.8	1.9	1.9
10 40	Capex/depreciation (x) Net debt/equity (%)	1.3	2.5 9.8	1.3	0.6 23.8	0.6 20.7	0.6 10.9
5 20	Net interest cover (x)	69.9	48.1	13.4	7.7	6.9	11.3

Source: Company data, Deutsche Bank estimates

Shawn	Park
+82 2 31	6 8977

10

shawn.park@db.com

Net interest cover (RHS)

15E

14E

ĻΟ



11

Net debt/equity (LHS)

# Introduction

# Some of the basics

In this FITT (Fundamental Industry Thought-leading Thematic) report, we look at China's coal-to-chemical industry. In subsequent FITT reports we will tackle China's coal-to-liquids, coal to urea/ ammonia and coal to synthetic natural gas industries. China's "Coal-to" industry is both a developing (CTOlefins, CTLiquids and CTGas) and a developed (CTUrea /Ammonia and CTMethanol) industry relative to the rest of the world. Coal to technology has been around for more than a century. China has improved on the technology used in the US during the 1960's; while the US improved on the technology used in Germany / South Africa in the 1930-40s; while Germany / South Africa improved on the technology developed in the UK during 1860s when coal was used to produce kerosene liquid for lamps.

We will first look at some of the basics of China's coal resource / industry and then move on to examine why and how China converts it's coal into synthetic gas ("Syngas") from which methanol is produced and thereafter used as a feedstock to produce olefins, mostly ethylene and propylene.

# Synthetic natural gas or "Syngas"

Syngas is synthesized from coal. It is a mixture of carbon monoxide (c. 63% by volume) and hydrogen (c. 27% by volume) with trace amounts of argon / nitrogen (c. 7.0%) carbon dioxide (c.1.5%), sulfur-containing compounds (c.1.4%) and methane (c.0.03%). It serves as a building block for the production of olefins (ethylene and propylene). Syngas can also be used to produce urea (fertilizer) and automotive fuels (diesel and gasoline); it can also be upgraded to "synthetic natural gas" and used as a natural gas (fuel) substitute for power plants and / or other industrial applications.

Syngas to Methanol, Syngas to Urea/ Ammonia, Syngas to Acetone and Coal to calcium carbide to PVC are all referred to as "traditional coal to chemical" processes. Syngas to ethylene, propylene, gasoline and diesel are referred to as "new coal to chemical" processes. The conversion of Syngas into Ethylene Glycol (MEG) and Syngas to Benzene is still in its infancy. In the following pages we will explain how China's coal is being converted into syngas and thereafter upgraded into various industrial products. Most of the world's "Coal-to" industry is currently based in and / or developing in China. The developed world seems wholly uninterested in the industry.

Syngas can be classified by heating value into High, Medium and Low-Btu gas (Figure 3) each of which is useful for different processes. High-Btu gas is composed of over 90% methane and has a heating value of 920-1,000 Btu/ft3. High-Btu "synthetic natural gas" can be used as a substitute for natural gas. Medium-Btu synthetic gas has a lower heating value of 250-550 Btu/ft3. Medium-Btu synthetic gas is used as a source of hydrogen to produce methanol, olefins and "liquid" fuels such as gasoline and diesel. Medium-Btu

The world's coal-to industry has a long history.

Coal, to Syngas, to Methanol, to Olefins ...

Syngas: the feedstock for the world's "coal-to" industry

Old and New "coal to"

High, medium and low Btu syngas

Г

synthetic gas can also be "upgraded" into High-Btu gas through a process called methanation. Low-Btu syngas has the lowest heating value among the three types of syngas and is typically used by electric power companies to generate electricity. Transforming raw syngas into Low, Medium and High synthetic natural gas entails various steps which we outline in this report.

In Figure 3 we list the heat values (Btu / cubic foot) of various hydrocarbons:

as fuels	<u>Btu/lb</u>	<u>Btu/ft3</u>	<u>Energy density</u> (Medium-Btu = 1
High-Btu gas (a.k.a. "Synthetic Natural Gas")		920 - 1000	2.4
Medium-Btu gas - feedstock for producing coal chemicals		250 - 550	1
Low-Btu gas		100 - 250	0.4
Natural gas	19,750	983	2.5
Hydrogen	51,628	275	0.7
Carbon monoxide	4,368	323	0.8
Methane	21,433	910	2.3
Ethane	20,295	1,630	4.1
Propane	19,834	2,371	5.9
Butane	19,976	2,977	7.4
Ethylene	20,525	1,530	3.8
Propylene	19,683	2,185	5.5
quid fuels			
Crude oil	18,352	1,110,810	2,777
Gasoline	18,679	838,687	2,097
Diesel	18,320	1,022,866	2,557
Fischer-Tropsch diesel	18,593	1,052,922	2,632
LPG	20,038	671,751	1,679
LNG	20,908	587,360	1,468
Methanol	8,639	425,903	1,065
Ethanol	11,587	571,239	1,428
olid fuels			
Lignite	7,198	388,707	972
Bituminous	8,998	418,400	1,046
Coking coal	12,300	639,600	1,599
Anthracite	12,597	623,551	1,559

Notes:

1) Lower Heating Value ("LHV") excludes water vapor's heat of vaporization.

2) For crude oil, we assume sweet light crude is used. Unlike heavy crude oil, light oil has a lower density than water.

3) For liquid fuels and natural gas, the energy density of each fuel may vary in different seasons. For example, in winter, small quantities of propane (which has a higher value of methane) may add to natural gas to increase the overall heating value of natural gas (a form of blending). In China, the composition and certain properties of diesel and gasoline may be different between southern and northern provinces.

Source: U.S. Department of Energy, The Engineering Toolbox, Deutsche Bank

In Figure 4 we price the hydrocarbons noted above in terms of their heat value or US\$ / mmBtu. This is the starting point to develop a better understanding of the economics behind China's push into coal-to-chemicals, coal-to-liquids (gasoline and diesel) and coal-to-synthetic natural gas.

If we can convert US\$ 2.50 / mmBtu (China bituminous coal) into US\$ 31.9 / mmBtu (China ethylene) at a cost less than US\$ 29.4 / mmBtu, then we make a profit.

	Heating Value		Price in C	hina		Price per unit heating value
	Btu/lb	Price Que in China's	otation <mark>NOTE</mark> market	Pric	ce (US\$)	US\$/mmBtu
Gas fuels						
Natural gas	19,750	1.73	RMB/m3	7.8	US\$/mcf	7.5
Ethylene	20,525	8,985	RMB/ton	1,442	US\$/ton	31.9
Propylene	19,683	8,090	RMB/ton	1,299	US\$/ton	29.9
Liquid fuels						
Gasoline	18,679	8,231	RMB/ton	3.49	US\$/gallon	32.1
Diesel	18,320	7,320	RMB/ton	3.80	US\$/gallon	29.1
LPG	20,038	5,320	RMB/ton	1.87	US\$/gallon	19.3
LNG	20,908	5,200	RMB/ton	1.83	US\$/gallon	18.1
Methanol	8,639	2,686	RMB/ton	431	US\$/ton	22.6
Solid fuels						
Lignite (3500 Kcal)	6,298	214	RMB/ton	34	US\$/ton	2.5
Bituminous (5000 Kcal)	8,998	305	RMB/ton	49	US\$/ton	2.5
Coking coal	12,300	460	RMB/ton	74	US\$/ton	2.7
Anthracite (7000 Kcal)	12,597	774	RMB/ton	124	US\$/ton	4.5

#### Figure 4: Hydrocarbon price per unit heating value (US\$/mmBtu)

#### NOTES:

Natural Gas: Nationwide average city-gate price post NDRC natural gas price reforms implemented July 2013; VAT excluded

Ethylene & Propylene: Nationwide average retail price; VAT excluded

Gasoline & Diesel: Nationwide average maximum allowed retail price; VAT excluded

LPG & LNG : Average ex-plant price of major refineries; VAT excluded

Methanol: Nationwide average wholesale price; VAT excluded

Coal: Ex-mine price in Shanxi (Bituminous, Coking Coal and Anthracite) and Inner Mongolia (Lignite); VAT excluded

Source: Engineering Toolbox, Bloomberg Finance LP; Deutsche Bank

# China – unlocking energy value differentials

The value proposition of China's coal-chemicals industry is explained by: 1) the energy price differentials between various coal qualities/ rank (lignite, bituminous & anthracite) vs. the OPEC supported crude oil (naphtha) price vs. the abundantly cheap natural gas (liquids) supply out of the Middle East (associated natural gas) and North America (shale gas); and 2) the cost differentials between transporting coal – the heavy black sedimentary rock, vs. transporting liquid coal – in the form of methanol, diesel and / or gasoline; vs. the cost of transporting gaseous coal – in the form of syngas or synthetic natural gas. We address these issues in the pages that follow.

# China's coal markets

China has a diverse coal market with multiple prices (Figure 12-13) which is the result of: 1) geographical (production) and industrial (consumption) dislocations; 2) differing transport costs between solid, liquid and gaseous coal over long distances, and 3) standard quality discounts among different coal ranks. China's coal is mined in the north (Inner Mongolia), central-north (Shanxi & Shaanxi) & western (Xinjiang) provinces, but consumed in the eastern provinces of Jiangsu, Zhejiang, Guangdong and others. Stranded bituminous coal reserves in China's far away western province of Xinjiang have a mine mouth cost of ~US\$ 22 / ton (US\$ 2.0 / mmBtu) whereas the same coal in the eastern port city of Qinghuangdao has a cost of US\$ 74 / ton. Lower cost, lower rank, stranded coal, abundant in China's Xinjiang and Inner Mongolia provinces is an ideal feedstock to drive China's "Coal-to" industry.

China has an abundance of coal reserves and very little oil and /or natural gas reserves (Figure 5-10). China imports 60% (and growing) of its oil needs, 32% (and growing) of its natural gas needs, but only 9% of its annual coal demand. As an aside, low quality / low cost coals from Indonesia and Australia can be imported into Southern China, Guangzhou, at competitive prices relative to China coals from Xinjiang and / or Inner Mongolia delivered to east coast China.

China's chemical industry uses crude oil (naphtha) as a feedstock to produce its petrochemicals. By law, China still prohibits the use of natural gas (although not Syngas) as a feedstock for the production of petrochemicals. In most parts of Asia, naphtha is the primary feedstock for petrochemicals. We are aware of only two petrochemical producers (Petronas Chemicals and PTTGC) in Asia that use natural gas as a feedstock for producing petrochemicals. All other listed Asian petrochemical producers use naphtha as a feedstock.

Using US\$ 110/ bbl naphtha to produce olefins is expensive (US\$ 1,185/ ton); using US\$ 42/ ton coal from Inner Mongolia is less expensive (US\$ 640/ ton); but using US\$ 5/ mmBtu natural gas from North America / Middle East is the least expensive (US\$ 338/ ton) way to produce olefins. As China sets out to build its uniquely China coal-to-olefins industry, we contemplate the contradictions of: 1) China's coal-to-olefin industry displacing its naphtha-to-olefin industry; and 2) China's push to find its cheap shale gas only to displace its various coal-to industries. In our view, the miss-allocation of capital continues in China.



The value proposition

Stranded, low cost, low rank coal is ideal for China's coalto industry

Lots of coal, but not much oil and gas

Asia uses high cost oil (i.e. – naphtha) to produce olefins

The miss-allocation of capital continues

# Figure 5: Global Coal Reserve (millions of metric tons)

т	m 10	Cool	Deees	
10	0 - 10	COal	Reser	ves

		Anthracite & Bituminous	Lignite & Sub-bituminous	Total	% Share
1	US	108,501	128,794	237,295	27.6%
2	Russia	49,088	107,922	157,010	18.2%
3	China	62,200	52,300	114,500	13.3%
4	Australia	37,100	39,300	76,400	8.9%
5	India	56,100	4,500	60,600	7.0%
6	Germany	99	40,600	40,699	4.7%
7	Ukraine	15,351	18,522	33,873	3.9%
8	Kazakhstan	21,500	12,100	33,600	3.9%
9	South Africa	30,156	-	30,156	3.5%
10	Other Europe/Eurasia	1,440	20,735	22,175	2.6%
	Total of top-10	381,535	424,773	806,308	93.7%
	Remaining countries	23,227	31,403	54,630	6.3%
	Total world production	404,762	456,176	860,938	100.0%

# Classification by region

	Anthracite & Bituminous	Lignite & Sub-bituminous	Total	% Share
Asia Pacific	159,326	106,517	265,843	30.9%
North America	112,835	132,253	245,088	28.5%
Europe & Eurasia	92,990	211,614	304,604	35.4%
Middle East	32,721	174	32,895	3.8%
South & Central America	6,890	5,618	12,508	1.5%
Total	404,762	456,176	860,938	100.0%

		MIn metric tons	% Share			MIn metric tons	% Share
1	China	3,650	46.4%	_	Asia Pacific	5,218	66.3%
2	US	922	11.7%		North America	1,281	16.3%
3	India	606	7.7%		Europe & Eurasia	1,003	12.8%
4	Australia	431	5.5%		Africa	264	3.4%
5	Indonesia	386	4.9%		South & Central America	97	1.2%
6	<b>Russian Federation</b>	355	4.5%		Middle East	1	0.01%
7	South Africa	260	3.3%		_		
8	Germany	196	2.5%		Total	7,865	100.0%
9	Poland	144	1.8%				
10	Kazakhstan	116	1.5%				
					China	3,650	47.5%
	Total of top-10	7,067	<b>89.9%</b>		Australia	431	6.3%
					Indonesia	386	6.2%
	Remaining countries	798	10.1%		Other APAC	751	6.4%
	Total world production	7,865	100.0%		Total APAC	5,218	66.3%

Source: BP, Deutsche Bank

# Figure 7: Global natural gas reserve

		Trillion cubic metres	% Share		Trillion cubic metres
1	Iran	33.62	18.0%	Middle East	80.50
2	Russian Federation	32.92	17.6%	Europe & Eurasia	58.40
3	Qatar	25.06	13.4%	Asia Pacific	15.45
1	Turkmenistan	17.50	9.3%	Africa	14.50
5	US	8.50	4.5%	North America	10.84
5	Saudi Arabia	8.23	4.4%	South & Central America	7.60
7	United Arab Emirates	6.09	3.3%		
B	Venezuela	5.56	3.0%		187.29
Э	Nigeria	5.15	2.8%		
0	Algeria	4.50	2.4%		
	Total of top-10	147.15	78.6%		
3	China	3.10	1.7%		
	Other reamining countries	37.05	19.8%		
		187.29	100.0%		

can be recovered in the future from known reservoirs under existing economic and operating conditions.

## Figure 8: Global natural gas production

		Bcf / day	% Share		Bcf / day	% Share
1	US	65.75	20.3%	Europe & Eurasia	99.90	30.8%
2	Russian Federation	57.15	17.6%	North America	86.49	26.6%
3	Iran	15.49	4.8%	Middle East	52.91	16.3%
4	Qatar	15.15	4.7%	Asia Pacific	47.30	14.6%
5	Canada	15.10	4.7%	Africa	20.86	6.4%
6	Norway	11.09	3.4%	South & Central Americ	17.11	5.3%
7	China	10.35	3.2%	_		
8	Saudi Arabia	9.92	3.1%	Total	324.58	100.0%
9	Algeria	7.86	2.4%			
10	Indonesia	6.86	2.1%			
	Total of top-10	214.71	66.2%			
	Remaining countries	109.87	33.8%			
	Total world production	324.58	100.0%			

Source: BP, Deutsche Bank

#### Figure 9: Global oil reserve

υþ	-10 Oli Reselves			Classification by region	
		Billion barrels	% Share		
1	Venezuela	298	17.8%	Middle East	808
2	Saudi Arabia	266	15.9%	South & Central America	328
3	Canada	174	10.4%	North America	220
4	Iran	157	9.4%	Europe & Eurasia	141
5	Iraq	150	9.0%	Africa	130
6	Kuwait	102	6.1%	Asia Pacific	41
7	United Arab Emirates	98	5.9%	=	
8	Russian Federation	87	5.2%		1,669
9	Libya	48	2.9%	=	
10	Nigeria	37	2.2%		
	Total of top-10	1,416	84.8%		
14	China	17	1.0%		
	Other reamining countries	236	14.1%		
		1.669	100%		

Note: (i) Only proved reserves is considered - i.e. Geological and engineering information indicates with reasonable certainty

that the reserve can be recovered in the future from known reservoirs under existing economic and operating conditions.

(ii) Reserves include gas condensate and natural gas liquids (NGLs) as well as crude oil.

## Figure 10: Global oil production

Тор-10	Oil Producing Countries		
		'000 bpd	% Share
1		11,530	13.4%
2	Russian Federation	10,643	12.4%
3	US	8,905	10.3%
4	China	4,155	4.8%
5	Canada	3,741	4.3%
6	Iran	3,680	4.3%
7	United Arab Emirates	3,380	3.9%
8	Kuwait	3,127	3.6%
9	Iraq	3,115	3.6%
10	Mexico	2,911	3.4%
	Total of top-10	55,187	<b>64.1%</b>
	Remaining countries	30,965	35.9%
	Total world productio	86,152	100.0%

## Classification by region

	'000 bpd	% Share
Middle East	28,270	32.8%
Europe & Eurasia	17,211	20.0%
North America	15,557	18.1%
Africa	9,442	11.0%
Asia Pacific	8,313	9.6%
South & Central America	7,359	8.5%
Total	86,152	100.0%
OPEC	37,405	43.4%
Non-OPEC	48,747	56.6%
Total _	86,152	100.0%

Note: (i) Include crude oil, shale oil, oil sands and natural gas liquids (NGL)

(ii) Exclude liquid fuels from biomass and coal

## Figure 11: China coal production flows west to east



	2009	2010	2011	2012	2013	Share %
Inner Mongolia	601	787	979	1062	994	26.9%
Shanxi	594	730	872	914	960	25.9%
Shaanxi	296	361	411	427	493	13.3%
Sub-total	1491	1878	2262	2403	2447	66.1%
Other provinces	1559	1362	1258	1227	1253	33.9%
Total	3050	3240	3520	3630	3700	100.0%

## Major consumption area

	Main uses	Coal type	Factors affecting domestic coal demand
Jiangsu	Electricity (c.75%); Cement (c.5%); Steel (c.5%); and Other Industries (c.15%)	Bituminous (4,000 - 5,500 Kcal)	<ul> <li>Economic activities</li> <li>(mainly heavy industries)</li> <li>Residential</li> </ul>
Zhejiang	Electricity (c.75%); Cement (c.5%); Steel (c.5%); and Other Industries (c.15%)	Bituminous (4,000 - 5,500 Kcal)	<ul> <li>Economic activities</li> <li>(mainly light industries)</li> <li>Residential</li> </ul>
Guangdong	Electricity (c.80%); Other Industries (c.20%)	Bituminous, Lignite (4,000 - 5,500 Kcal from China; 3900 - 4500 Kcal from Indonesia)	<ul> <li>Economic activities</li> <li>Price competition</li> <li>from Indonesian import</li> </ul>

Source: BP, China National Coal Association, Deutsche Bank

#### Figure 12: China's multi-tiered coal price market – promotes a "coal to" industry.



1. Coal prices in the port of Qinhuangdao are affected by numerous factors, including (i) severe weather conditions; and (ii) the annual inspection of the Daqin Railway which causes a temporary interruption in supply each year. The annual inspection in 2013 started on 9 Oct and lasted for 20 days.

2. Seaborne transportation fees move in sympathy with coal prices and serve as an indicator of local sentiment for coal prices.

3. The transport of coal by rail to Eastern China from Xinjiang province remains a bottlemeck. The Xinjiang government is considering plans to expand both its rail capacity and coal production capacity over the coming years.

4. Guangzhou is considered the "southern gate" for coal imports into China. Since 2010, electricity producers in southern China have started importing Lignite from Indonesia for the purpose of coal blending (i.e. to mix with high-quality domestic coal) in order to lower the overall domestic coal cost.

5. Shanxi province produced more coal in 2013 than any other province in China. Shanxi coal production however is relatively high cost given ( i ) high local production taxes; and (ii) under ground (vs. open pit - Inner Mongolia) mining operations. Caol extraction costs in Shanxi are generally higher than Inner Mongolia on a per heating value basis.

6. According to the International Energy Agency, coking coal carries a price premium over thermal coal. Thermal coal is used predominently for generating electricity and its "heat value" is the principal determinent of its market price. Coking coal on the other hand is used principaly for making iron and its value is driven by its inherent properties of "caking" and "strength" rather than heat value.

Source: China National Coal Association, Bloomberg Finance LP; Deutsche Bank

#### Figure 13: Growth in China's coal production



China's domestic coal prices were deregulated in 2002 and as a result, track international prices reasonably well (Figure 14). In 2012 however, the NDRC mandated a set of "temporary thermal coal price intervention measures" (Figure 15). These "temporary" price measures were indeed done away with in 2013. Similar to China's coal price policy, China's coal to products (urea, methanol and olefins) are also freely priced / traded commodities.

China coal and coal-to product prices are for the most part, deregulated.



Figure 14: Coal is freely priced according to the market in China

Domestic coal prices have been mainly market-driven since 2002, when the PRC government eliminated the price control measures for coal used in electric power generation. Prior to 2006, however, the PRC government implemented temporary measures to intervene and control unusual fluctuations in thermal coal prices. This, among other reasons, caused thermal coal contract prices for major users to be generally lower than spot market prices during the period. On December 27, 2005, the NDRC announced the elimination of this temporary thermal coal price intervention practice, thus completely removing control over thermal coal prices, including contract prices for major users.

However, on November 30, 2011, to stabilize the coal market and the market prices of thermal coal, the NDRC announce new temporary thermal coal price intervention measures, the NDRC Notice on Enhancing of Administration and promulgated by the Regulation of Thermal Coal Price, NDRC ([2011]No.299)("Notice No. 299"), which provides that (i) control the increase in contract thermal price: (a) for the annual crucial contract coal to be transited for national trans-provincial product transportation, the increase in contract prices in 2012 should be capped at 5% of the prices in 2011; (b) for the thermal coal generated and used by the province (district, city) which itself generates coal, the annual increase in contract prices should not exceed 5% of contract prices of last year; (ii) implement capping restraint price to the thermal coal in market transactions. Since January 1, 2012, the FOB price of thermal coal with a calorific value of 5,500 kcal/kg at nine ports including Qinhuangdao port, Tianjin port an Jingtangport should not exceed Rmb800 per ton. FOB price of other thermal coal should be calculated correspondingly based on the capping price of thermal coal with a calorific value of 5,500 kcal/kg. The market transaction price of thermal coal transported by railway and highway by the parties should not exceed the actual accounting settlement price of the end of April 2011, and should not increase the price by way of changing accounting settlement means.

Source: Prospectus of Inner Mongolia Yitai Coal Co., Ltd (3948.HK), Deutsche Bank

The NDRC does influence the type of coal imported by (i) prohibiting imports of coal with less than 4,544 Kcal/kg heat value; and (ii) setting an import tariff on lignite. Indonesia is not affected by China's lignite import tariff because Indonesia is a member of the "China-ASEAN Free Trade Area". As per the NDRC's "Clean Air Package" issued 27-Sep 2013, high-sulfur coal imports are prohibited, although there were no details as to what defines "high-sulfur" coals. In mid-Jan, the China Securities Journal reported that the NDRC would clarify and implement details surrounding imports of high sulfur / high ash coal. We are still waiting for the details.

According to the China National Coal Association (CNCA), 2013 domestic coal production was 3.7bn tons with imports of 0.33bn tons. Total domestic demand was 3.6bn tons. Imports accounted for only 9% of domestic consumption. Most of China's imported coal is lignite and purchased from Indonesia by China's state-owned power companies.

Still waiting

Coal imports – only 9% of total demand

# What is coal?

Coal is a combustible, sedimentary, organic rock, composed mainly of carbon (C), hydrogen (H) and oxygen ( $O_2$ ). It is formed from vegetation which has been trapped between rocks and altered by the combined effects of pressure and heat over millions of years to form coal seams. Coal is a fossil fuel and is far more abundant than oil or gas.

The degree of change undergone by coal as it matures from soft peat to hard anthracite has an important bearing on coal's physical and chemical properties and is referred to as the 'rank' of the coal. The ranks of coal from those with least to most carbon are: lignite, sub-bituminous, bituminous and anthracite.

**Lignite** or "brown coal" is the lowest rank of coal. It has low heat value (3000-3500 KCal/kg) and high water content (up to 65% of mass). Due to its high water content and low heat value, lignite is generally uneconomical to transport. As a result, most lignite is used for generating electricity in power plants sited close to the mine mouth. Lignite is also an ideal candidate for onsite coal to chemical projects.

**Bituminous** coal is of higher quality than Lignite and of poorer quality than Anthracite. Bituminous coal normally contains 3-16% water by mass with heating value ranging from 5000 to 6500Kcal. The majority of China's bituminous coal production comes from Shanxi, Inner Mongolia and Shaanxi provinces. China's bituminous coal is mainly used for generating electricity and producing cement. In terms of usage, bituminous coal can be divided into two sub-types: thermal and coking coal (a.k.a. metallurgical coal). Thermal coal is used for generating electricity/heating and accounts for c.80% of China's total coal demand. Coking coal is primarily used for making "coke" which is necessary to produce steel and iron. Coking coal has different properties than thermal coal, which in their own right add value (other than heat value) in certain industrial processes such as the production of steel.

**Anthracite** is considered the highest rank of coal worldwide. It has the highest heating value (5500-7000KCal) and the lowest moisture level (less than 15% of mass) of all coal types. In China, anthracite is used for power generation (44.4%), cement production (26.3%), urea / ammonia production (16.3%) and iron & steel production (13.0%). We have lifted this insight / data from the Feishang Anthracite Resources Limited (1738 HK) prospectus dated 31 December 2013. China grew its production of anthracite at 4.6% CAGR 2008-12 to a total of 534.4 million tons. Shanxi province (c.32%) and Henan province (c.16%) are China's primary production centers for anthracite. China is a net importer of anthracite (31 mln tons 2012) with most of the imports coming from Vietnam.

Lowest rank – lowest heat value

Most prevalent- most commercial

Highest rank – highest heat value

## Figure 16: Coal types and usages



Figure 17: China's myriad of coal prices (excludes VAT)



Source: Tianjin Port Electronic Transaction Platform; Jincheng Anthracite Mining Group; Jinyou Futures Research; SX Coal; Deutsche Bank

Synthetic Natural Gas	Urea	Methanol	Liquids *	Olefins			
0.1 (per mcf)	0.77	1.40	3.50	4.20			
Increasing coal consumption per ton product							
<ul> <li>* "Liquids" is collective class of oil products (gasoline and diesel)</li> <li>For a coal-to-liquids project, the operator will adjust its optimal product mix</li> <li>by demand of each oil products</li> </ul>							







# Syngas

# Coal gasification -

Syngas is not a compound or element that can be explained as " $C_3Hy$ " or " $HxM_2$ ". Syngas is a mixture of carbon monoxide (CO) and hydrogen (H) without uniform structure and / or proportion.

Syngas or synthetic natural gas is produced by either (i) the gasification of carbon-rich matters (like coal) and / or (ii) steam reforming of methane (natural gas). Any carbon-containing substance (e.g. coal, biomass, wood, industrial waste, petcoke) can be "gasified" and thereby converted into syngas.

China is using its remote and abundant coal resources in northern China (Inner Mongolia, Shanxi and Shaanxi provinces) and western China (Xinjiang and Ningxia provinces) to produce petrochemicals, fuels (gasoline and diesel), fertilizers and synthetic natural gas. The current economics of China coal-to-olefins is cost efficient relative to the standard Asian fare of using naphtha to produce olefins (Figure 20). However, China's coal-to-olefins is not cost efficient relative to "associated natural gas liquids" to chemicals out of the Middle East and / or "shale gas" to chemicals out of North America.

Syngas – a bit of H and CO, "shaken not stirred"

Any carbon containing substance can be "gasified"

More and more low cost natural gas – China shale?

#### Figure 20: Ethylene production cost curve (2013)



#### Figure 21: Overview – from coal feedstock to purified Syngas



In this analysis we consider the Shell Coal Gasification Process ("SCGP") as opposed to other gasification processes as developed by GE Energy, Lurgi and / or Siemens (Figure 32-33). All four of these coal gasification systems have proven to be effective; yet, all four have slightly different input / output requirements / products. Of the various technologies available for coal gasification, the Shell Coal Gasification Process is most widely used globally and as a result the process that we focus on in this FITT report.

As an example of the differences in gasification technology, both the GE Energy and the Lurgi gasification process call for a coal slurry (rather than coal dust) to be fed into the gasifier. Although the processes / technologies differ the output is roughly the same (Figure 32-33).

Wet or dry coal

Shell Coal Gasification

Process - most widely used

# The "gasification" process

Under the Shell SCGP process, dry coal is pulverized in a milling unit and fed into a gasifier which has been pre-heated to 1,400-1,600 °C and placed under 5 MPa of pressure. Compressed oxygen, nitrogen and steam are added to the gasifier. The compressed oxygen ( $O_2$  @ 95% purity) and steam ( $H_2O$ ) serve as reactants in the "gasification" process (converting coal powder into carbon monoxide and hydrogen) while nitrogen (N) acts as a transport vehicle.

In the presence of oxygen and heat, coal carbon converts to carbon monoxide (CO) and carbon dioxide (CO₂) inside the gasifier. Steam is added; the carbon in the form of CO & CO₂ reacts with steam (H₂O) to form carbon monoxide (CO)

The process of converting coal to syngas

and hydrogen (H), known as Raw Syngas (Figure 21-22). At 1,400-1,600 °C, coal ash melts into slag and exits the bottom of the gasifier as molten liquid coal slag which can be re-used as a building material in the construction industry (Figure 22-23).



	US\$/ton	Ton/hr	Revenue per year (million US\$)			
Ash	50	3.5	1.4			
Slag	25	9.0	1.8			
Steam	38	27.0	8.1			
Total revenue of by-products 11.3						
We assume the gasifier operates 7,920 hrs per year (24 hrs x 330 days) and all by-products can be sold at market value						

#### Figure 23: Economics of coal gasification by-products

Source: Company data; Deutsche Bank

Hot raw Syngas leaving the gasifier can reach 1500°C and needs to be cooled. The cooling is done by water quench for heat recovery. Fresh water is the preferred source used to cool the syngas as brackish (with salts) water will tend to corrode the equipment. High pressure steam will be generated from the cooling process and thereafter either i) released from the system for subsequent processes (e.g. turning the gas turbine), or ii) sold in the market for purposes generally associated with space heating.

# The raw syngas clean up process

Raw syngas leaving a gasifier consists mostly of hydrogen (H) and carbon monoxide (CO) with small amounts of acid gas (mainly carbon dioxide and hydrogen sulfide) and other impurities (ammonia and mercury). The acid gas has to be removed from the syngas otherwise it will compromise the catalyst used in subsequent coal to chemical synthesis.

Cleaning up the syngas to avoid costly complications in later processes

#### Figure 24: Cleaning up Raw Syngas



**Rectisol Process** (Figure 24) - "Rectisol" is an acid gas removal process / technology which uses a refrigerated methanol (-40°C) solvent to separate carbon dioxide, hydrogen sulfide and other impurities (ammonia, mercury) from raw Syngas. The methanol solvent is dispersed from the top of the Rectisol Wash Unit and flows down to cover a collection of many small, silver coated balls; the raw syngas is injected from the bottom of the wash unit and flows upward through the voids of the balls. The spheres coated in cooled methanol provide a large surface area for the syngas and methanol to interact. Carbon dioxide and hydrogen sulfide are absorbed into the cooled methanol at high pressure. Syngas leaving the second methanol bath contains primarily carbon monoxide and hydrogen. The Rectisol process lowers the sulfur and carbon dioxide content in syngas to 0.1 and 10 ppm respectively. The saturated methanol is thereafter cleaned of the carbon dioxide (pressure reduction) and hydrogen sulfide (heat application) and recycled.

The Rectisol Process is licensed by both Linde and Lurgi. The process is inexpensive, available worldwide and used extensively in China. The methanol solvent used in the process carries a cost of roughly US\$ 460/ ton. For a Rectisol Wash Unit with processing capacity of 22 mcf (syngas) / hour, roughly 200 tons of methanol per month is required.

Hydrogen sulfide is highly toxic and will normally be converted to two different products: 1) elemental sulfur (Claus Process), and / or 2) sulfuric acid (the Wet Sulfuric Acid Process) depending on economics. The current market price for sulfuric acid and elemental sulfur is US\$160/ton and US\$32/ton respectively.

The carbon dioxide released from saturated methanol (Rectisol process) can be sold to the market; released into the environment; injected into oil fields and / or saved into inventory. The injection of  $CO_2$  into depleted oil fields 1) dissolves into the crude oil and reduces viscosity, and 2) increase down-hole pressure to force more oil up to the surface for collection. Additional common uses of  $CO_2$  include: 1) food processing / food transport (dry ice); 2) water treatment / PH control; and 3) beverage industry / carbonation of drinks.

Get rid of that carbon dioxide

#### Figure 25: Rectisol Wash Unit by Linde at Jilin, China



Source: The Linde Group, Deutsche Bank

The Claus Process (Figure 26) - "Claus" is a desulfurizing process that converts gaseous hydrogen sulfide to elemental sulfur. The Claus process can be divided into two steps: a thermal process and a catalytic process.

In the thermal step, hydrogen sulfide is fed into a combustion chamber at a temperature of 1000-1500°C and pressure of 70k Pa. One-third of the hydrogen sulfide is oxidized to sulfur dioxide; two-thirds remains as hydrogen sulfide. Sulfur dioxide will further react with the remaining hydrogen sulfide to form sulfur in gaseous form. The hot gas (rich in gaseous sulfur) is cooled and condensed in a heat exchanger. The condensed liquid sulfur is separated from the remaining un-reacted gas and collected for storage. The un-reacted gas will be process further through the catalytic stage.

In the catalytic step, the un-reacted gas is re-heated and fed into the first catalytic reactor at a temperature of 300 °C in the presence of an aluminum/ titanium-based catalyst. Roughly 20% of the hydrogen sulfide is converted into gaseous sulfur. The gas mixture (containing gaseous sulfur and un-reacted hydrogen sulfide / sulfur dioxide) leaving the first catalytic reactor is cooled in another condenser. The gaseous sulfur is condensed into liquid sulfur and separated from the remaining un-reacted gas at the outlet of the condenser. The liquid sulfur is sent to storage.

The un-reacted gas leaving the condenser is sent to another re-heater and the process is repeated for a second and third and / or fourth time at successively lower reactor temperatures. The thermal step converts ~70% of sulfur (end product) and the catalytic step converts the remaining 30%.

Get rid of that deadly hydrogen sulfide

## Figure 26: The Claus Process which converts hydrogen sulfide to elemental sulfur



The **Wet Sulfuric Acid Process** (Figure 27) - "WSA" converts hydrogen sulfide into commercial grade sulfuric acid.

Hydrogen sulfide gas is first combusted to convert hydrogen sulfide to sulfur dioxide (SO₂). The gas is then heated or cooled as the case may be to the required inlet temperature of the converter. Sulfur dioxide undergoes oxidation to sulfur trioxide (SO₃) in the presence of the catalyst. At the exit mouth of the converter the gas is cooled with water vapor which allows SO₃ to react with water to form sulphuric acid (H₂SO₄) in the gas phase.

The cooled gas enters the WSA condenser which condenses the sulphuric acid gas to form the liquid product. Sulphuric acid condenses in the tubes and flow downward counter-current to the rising hot process gas. This contact with the hot process gas concentrates the acid to the desired product acid concentration.

The sulfuric acid collects in the brick lined lower section of the WSA condenser where it is pumped out and cooled before it is delivered onward to storage. The principal uses of sulfuric acid include mineral processing, fertilizer manufacturing, oil refining and chemical synthesis.

### Figure 27: The Wet Sulfuric Acid Process which converts hydrogen sulfide to sulfuric acid



# The water-gas shift reaction

The **Water-gas Shift Reaction** ("shifting") is used to increase the ratio of hydrogen to carbon monoxide in purified Syngas. This is achieved by adding steam (water–H2O) to the purified Syngas and passing it through a series of steps under an iron / copper-based catalyst. The process converts the carbon monoxide (CO) contained in the purified Syngas to carbon dioxide (CO₂) by stealing an additional oxygen molecule from the steam / water. Stripped of its oxygen molecule, water (H₂O) becomes two molecules of hydrogen (H). This is the "water-gas-shift" reaction referred to in all "coal-to" processes.

Raw syngas exiting a Shell SCGP coal gasifier generally contains 63% carbon monoxide and 27% hydrogen by volume, which is a ratio of 1:0.43. Purified and "shifted" syngas ready for methanol synthesis and thereafter olefin production should have a CO / hydrogen ratio of 1:2. The water shift process rearranges the molecules at hand to produce a mixture of carbon monoxide and hydrogen at an optimal ratio of 1:2.

Upgrade syngas to a CO-to-H ratio of 1:2





The "high temperature shift" speeds up the shifting reaction but also leads to incomplete conversion of steam (water) to hydrogen. The higher temperature may actually cause the normal "shift" reaction to reverse thereby causing hydrogen and carbon dioxide to convert back to steam and carbon monoxide. The water-gas shift reversal is caused by too much heat. The water-gas shift reaction in its own right gives off heat. The heat released during the shift together with the heat (steam) supplied externally can cause elevated temperatures inside the reactor. Very high temperatures will cause the shift reaction to reverse – thereby reducing the hydrogen yield of the process. In order to strike a balance between the reaction rate and the maximize hydrogen yield, Syngas has to pass through two "shift" stages: 1) the "High Temperature Shift", and 2) the "Low Temperature Shift". The two-step shift process maximizes the hydrogen yield from the reaction.

Striking the right balance

# Equipment used in the coal-to-syngas process

The gasifier (Figure 29-33) is one of the more important pieces of equipment for coal-to-chemical projects. The gasifier converts coal to syngas. The coal to syngas reaction depends on the type of gasification technology used: Shell, Siemens, Lurgi, KBR and GE Energy all have licensed gasification technology. Shell's (SCGP) technology is the most widely used coal-to-syngas process.

Shell started its coal gasification technology in 1976 and has been licensing its technology in China since 2000. Up to 1H2013, Shell had 21 coal gasification units operating in China; the majority of these units are used for producing coal-based urea and methanol.

Dime a dozen

Almost 40 years of development. Figure 29: Coal gasifier (Shenhua CTL)



Source: Siemens, Deutsche Bank

Components	Current authorized vendors	Local vendors?
Gasifier internal parts	Wuxi Huaguang Boiler, Dongfang boiler	Yes
Coal burners	SMDERI	Yes
Lignition starters	HTYZ	Yes
Sluicing valves	Honshen Antiwear	Yes
Coal flow diverter valve	Hefei MRI	Yes
Coal mass flow measure device	No local vendors	No
Aeration devices	Xi'an baode, AT&M	Yes
Source: Deutsche Bank		

Figure 30: Critical components of Shell gasifier

A standard Shell gasifier (diameter of 4.8 meters, weight of 1,300 tons) has a Syngas capacity of 4,600-5,300 mcf / hour and requires 2,000 tons of coal feedstock per day. Nearly all critical components of the Shell gasifier are manufactured in China. The major authorized local vendors of the Shell gasification unit include Shanghai Boiler Works Company (BOIZ CH / private company) and Dongfang Boiler Group (subsidiary of Dongfang Electric Corp – 1072 HK; Buy).

The inner wall of a Shell coal-gasifier consists of glass water tubes which are arranged side-by-side vertically, and held together by a flat steel sheet. The wall temperature is controlled by circulating water through the glass tubes. Slag covers the surface of the glass water tubes and thus provides a protective layer. The gasifier wall has an estimated life span of 20 years. Most other gasification process technologies use heat-resistant brick walls that need to be replaced every two-years. The replacement of a heat-resistant brick wall per gasifier costs ~US\$0.75 million and requires a two month shutdown.

GE Energy coal gasification technology (formerly Texaco gasification technology) has been in China for more than 20 years. However, since 2005, GE has won few contracts from the China market as domestic coal gasification technology gains market share at GE's expense. The GE Energy (Texaco) gasifier uses refractory brick as the main material for the walls of the gasifier. Syngas from the GE Energy gasifier has a lower heating value (than others) because the coal is injected as slurry (water accounts for 40% of the mixture by mass) rather than as coal dust.

2,000 tons of coal will get you 5,000 mcf/ hour for the day

# Figure 31: Major Shell coal gasification projects in China

	Products	Coal usage (ton/day)	Syngas (Nm³/hr)
Sinopec Shell Yueyang	Ammonia / Urea	2,000	142,000
Sinopec Hubei Chemical	Ammonia / Urea	2,000	142,000
Shenhua Inner Mongolia Direct Coal Liquefaction	Hydrogen	4,000	300,000
Datang Power	Coal to synthetic natural gas	2800 x 3	~600,000

Source: Company data, Water in Synthetic Fuel Production; Deutsche Bank

# Figure 32: Reaction condition: Shell (SCGP) vs. GE Energy

	Shell (SCGP)	Unit	GE Energy
Reaction condition			
Temperature	1400 -1700	°C	1300 - 1400
Pressure (Mpa/psi)	2.46 / 357		4.22 / 612
Dhysical form of Cool	Cool nowdor		Cool durn
for injection	Coal powder		Coarsiurry
ion injection			
Composition by volume			
Hydrogen	26.7	%	30.3
Carbon Monoxide	63.1	%	39.6
Total of hydrogen and CO	89.8	%	69.9
Carbon Dioxide	1.5	%	10.8
Methane	0.03	%	0.1
Hydrogen Sulfide	1.3	%	1
Water moisture	2.0	%	16.5
Others	5.4	%	1.7
Total	100	%	100
Carbon Conversion Efficiency	> 99%		96 - 98%

Source: Company data; Water in Synthetic Fuel Production; Deutsche Bank
## Figure 33: A comparison of global coal gasification technologies

	Shell SCGP	GE Energy	Siemens
	Linuita	Linuita	1 in the
Coal suitability	- Lignite	- Lignite	- Lignite
	Rituminous	Rituminous	Rituminous
	Bituminous	Bituminous	Bituminous
	- High ash and / or sulfur	- High ash and / or sulfur	
	content suitable	content suitable	
	- Coal processed as powder	- Coal processed as slurry	
Oxygen requirement	400 units of oxygen required per 1000 unit Syngas (Lower than GE by 15-25%)	330 units of oxygen required per 1000 unit Syngas	400 units of oxygen required per 1000 unit Syngas
			- / . 8
Gasifier wall	Sepcial-designed membrane (No brick refractory wall) 20 years useful life	Brick refractory wall 2 years lifetime	Both "special-designed membrane" and "brick refractory wall" are available
Capital cost	Higher	Lower	Highest
Effective Syngas yield (Hydrogen and CO)	95%	80%	90%
Operating condition			
Temperature	1400 - 1600 °C	Lower than Shell	Same as Shell
Pressure	4 MPa	Higher than Shell	Same as Shell
Repair and maintainence	Low	High	Low
Equipment supplied locally	Most critical parts supplied locally	Most critical parts supplied locally	Few critical parts
	I		

Source: Company data; Water in Synthetic Fuel Production; Deutsche Bank

The Air Separation Unit (Figure 34) is another critical piece of equipment in converting coal to syngas. The ASU (Air Separation Unit) separates atmospheric air into gaseous / liquid oxygen, nitrogen, argon and sometimes other inert gases (Neon, Krypton and Xenon) by cryogenic distillation. Industrial gases are principally used in the steel, chemical, refining, metallurgy, and food processing industries. ASU technology is well-developed globally.

A coal-to-chemicals project requires compressed pure oxygen for the coal gasification process (Figure 21, Figure 22 & Figure 27). Nitrogen is also required for subsequent steps in coal to chemicals production (e.g. for producing MEG and ammonia/ urea). The average industrial gas volume

Yingde's business

Coal gasification requires lots of pure oxygen

2 July 2014 Chemicals China's Coal to Olefins Industry

required in the coal-to-chemical process is higher than most industrial processes. For example, a coal-to-olefins plant with 600,000 ton/ year capacity needs installed oxygen capacity of 8,500 mcf / hr while a steel mill with 1,000,000 ton/ year capacity needs only 5,300 mcf / hr.

The largest A.S.U. manufactured globally has oxygen capacity of 200k Nm3/ hour (5,700 mcf / hr). An average-sized ASU has capacity of 30-60k Nm3/ hour. The global industrial gas market is dominated by several big corporate names: Air Liquide (AI FP; Buy), Linde (LIN GY; Buy), Praxair (PX US; Buy), and Air Products and Chemicals Inc (APD US; Buy), all of which operate in China. Yingde Gases (2168 HK - Buy) is China's largest industrial gases provider by revenue and a major competitor (in China) to the international suppliers. Yingde has two large ASU service contracts for Coal-to-Chemical projects: 1) the Shenhua Baotou CTO project (4 x 60k Nm3/ hr); and 2) the China Coal CTO project (4 x 60k Nm3/ hr.).

The industrial gas market in China is growing at CAGR of 11.1% pa (2007-13) and the business opportunity is shifting from more traditional industrial customers (steel, refining and petrochemicals) to "new economy" customers (CTO, CTM, Healthcare; and Technology). Hangzhou Hengyang Company Ltd (002430 CH) is China's largest manufacturer ASUs.

Stand alone economics for the transformation of coal to syngas is in short supply. We continue to search for this information. Notwithstanding, syngas economics are captured in industry and our integrated CTM cost models (Figure 64-71) as well as industry and our CTO cost models (Figure 87-91).



/

Yingde is China's largest industrial gas provider

Industrial gases - a growing industry in China

# Methanol

## What is it?

The second step in producing olefins (ethylene and propylene) from coal is the conversion of Syngas into Methanol, which among other things (Figure 35) serves as a feedstock for CTOlefins, CTLiquids. CTUrea/ Ammonia and most "Coal-to" end products.

Syngas is a mixture of hydrogen and carbon monoxide. Syngas can be made from a wide array of feedstocks including natural gas, coal, oil / naphtha / fuel oil / coke, wood and biomass. Today, 70% of global methanol production comes from the synthesis of natural gas into syngas while 11% comes from the synthesis of coal to syngas. The remaining 19% of methanol production comes predominantly from the synthesis of oil products / naphtha / fuel oil into syngas. Currently, one-hundred percent (100%) of the world's Coal-to-Methanol ("CTM") production is based in China.

Methanol is a light, colorless and flammable liquid. It is corrosive to certain metals (ICE engines) and it burns without smoke and / or a noticeable flame. The chemical formula for methanol is  $CH_3OH$ . Globally, methanol is used 1) in energy / fuel applications (30-35%), 2) in producing formaldehyde (30-35%) which in turn is principally used as an adhesive in the construction industry, and 3) in producing other industrial products (30-35%). Figure 35-38 provide a glimpse into the many uses of methanol in today's global economy.

Step two of three

Syngas is mostly produced from natural gas (70%) rather than coal (11%).

Fuel (mixing) applications / the construction industry / other industrial products

## Figure 35: Summary on methanol's major uses Derivatives End uses Sectors (Chemical species) (Product) Formaldehyde Resins Construction Acetic Acid **Solvents** Automative MTBE Packaging materials Electronics DME Gasoline Packaging additive Gasoline Transportation Fuel MTO / MTP blending **Fuels** Biodiesel Source: Methanol Institute, Methanol Market Services Asia, Deutsche Bank

## Figure 36: Global Demand for methanol (2012)



In Figure 37-38 we consider the uses of methanol in terms of energy (fuels) and non-energy related uses.

Figure 37: Application of methanol – non-energy related

Formaldehyde	Formaldehyde is mainly used for making <b>resins</b> in textile and construction industries, <b>adhensive</b> for industrial uses and <b>disinfectants</b> .
Acetic Acid / Pure Terephthalic Acid	Acetic Acid / Pure Terephthalic Acid is mainly used for making vinyl acetate and trreftalic acid which are used for the synthesis of polyethylene terephthlate (PET). PET is used for making <b>plastic containers, glass fibers and Dacron</b> .
мто	Methanol to Olefins - MTO is mainly used for making polyethylene and polypropylene. Polyethylene / Polypropylene are used for making plastic bags, plastic containers and packaging materials.

Source: Methanex, Deutsche Bank

## Figure 38: Application on methanol – energy-related

Fuel Additive	Methyl tertiary-butyl ether (MTBE) is made from methanol and is used to <b>make gasoline burn cleaner</b> with fewer emissions. Its use is controversial in the US and Europe. In 2003, several US states banned methanol and started replacing MTBE with ethanol.
Fuel Blending	Methanol can be mixed directly with gasoline and used as a transport fuel.
DME	Dimethyl ether (DME) is a common gaseous fuel used for cooking and heating principally in Asia. DME can also be mixed with gasolie and / or LPG to be used as <b>a transportation fuel.</b>
Biodiesel	Biodiesel is a fuel made from biological products such as corn and vegetable oils, and is being mixed with methanol to produce <b>a</b> renewable diesel fuel alternative.
Courses Motherson Doutsche D	

Source: Methanex, Deutsche Bank

Smaller amounts of methanol are also used globally to produce:

**Methyl Chloride** is a colorless, extremely flammable and toxic organic gas. It was once used as a refrigerant and gasoline additive. Due to its toxicity and flammability, these "retail" uses have been curtailed at least in developed countries. Methyl chloride is today used principally as 1) a chemical intermediary in the production of silicon polymers, 2) a solvent in the production of rubber, and 3) for various applications in refineries.

**Methyl Methacrylate (MMA)** is a colorless, liquid organic compound. MMA is used as a chemical intermediate in the manufacture of poly-MMA plastics and as a modifier for PVC. It is also used as a cementing agent by orthopedic surgeons in hip and knee replacements.

**Methylamine** is a colorless organic gas  $(CH_3NH_2)$  and a derivative of ammonia. It is principally used as building block for the synthesis other chemical compounds such as solvents, pesticides and pharmaceutical products.

**Methanethiol** is a colorless organic gas ( $Ch_3SH$ ). It is used 1) as a dietary additive in animal feed, and 2) as a precursor in the production of pesticides.

**Dimethyl terephthalate (DMT)** is a white solid organic compound. It is used 1) in the production of polyethylene terephthalate (PET) which is used to make plastic containers, and 2) in the production of polytrimethylene terephthalate (PTT) which is used to make carpet fibers.

Methanol to olefins (MTO) - of which methanol to propylene (MTP) is a subsegment, is anticipated to be a growth industry in China over the coming decade. The technology used in synthesizing MTO/ MTP has been developed over the past 30 years and seems well developed / mature but underutilized both globally and in China. We suspect this has to do more with economics than anything else. The technology used to convert methanol to Monoethylene Glycol or "MEG remains in its infancy.

## Global methanol market

The methanol Supply, Demand and Capacity numbers noted throughout this report follow industry practice and do not include methanol consumed by way of the vertically integrated Coal-to-Olefins (CTO) process.

However:

- The China numbers, and, therefore, by default the global numbers, include Chinese producers of methanol that not only sell methanol to third parties but may also have downstream production processes to convert methanol to DME, MTBE, Acetic Acid and / or other products as an aside; and
- 2. The China numbers and, therefore, by default the global numbers include "co-production" of ammonia/ methanol. Methanol is (also) a byproduct of the coal to ammonia process. Globally, only China uses coal to produce commercial quantities of ammonia / urea; all other countries use natural gas to produce commercial ammonia/ urea. As a result, only in China do we see methanol production as a byproduct of the coal-to-ammonia production process.

We estimate that 28% (12.7 mln tons) of China's "stand-alone" methanol capacity (45.4 mln tons) is affiliated with the co-production of ammonia / methanol.

#### Supply – Demand and Growth

From 1990 through 2012, global methanol capacity (Figure 39) grew from 23 million tons to 91.4 mln tons, a CAGR of 6.5%. Over the same period of time, global methanol production (Figure 40) grew from 17.5 to 61.1 million tons, a

2 July 2014 Chemicals China's Coal to Olefins Industry

CAGR of 5.9%. Since 1990 methanol capacity has outgrown methanol production leading to a decline in utilization rates from 76% (1990) to 67% (2012). There is excess capacity in today's global methanol market (Figure 41).



#### Figure 40: Global methanol production (1990 – 2012)



Source: IHS Chemicals; Deutsche Bank

#### Figure 41: Global methanol – too much capacity



In 2002, China's methanol capacity represented just 10% of global capacity; by 2012, it represented 50% of global capacity (Figure 42). The overcapacity in the global methanol market as well as the recent surge in global production growth is coming from China (Figure 42-43). Global methanol capacity growth (x-China) 1990-2012 has been a modest 3.3% CAGR; China's methanol capacity growth 1990-2012 has been a gigantic 28% CAGR (Figure 42). Global methanol production growth (x-China) 1990-2012 has been a modest 2.6% CAGR; China's methanol production growth 1990-2012 has been a substantial 25.8% CAGR (Figure 43).



#### Figure 42: China methanol capacity vs. Rest of the World (1990-2012)

## Figure 43: China methanol production vs. Rest of the World (1990-2012)



Global demand for methanol 2006-13 has grown at 8.2% CAGR (Figure 44). Global demand for methanol (x-China) 2006-13 has grown at a miserly 1.4% CAGR. China's demand for methanol 2006-13 has grown at a considerable 22.4% CAGR (Figure 45).





## Figure 45: Methanol consumption China vs. Rest of the World (2006-13e)

Figure 46: Methanol consumption China vs. Rest of the World (2006-13e)



What is causing China's consumption of methanol to grow 16x (2006-13e) faster than the rest of the world? Similarly, but over a longer term period, what is causing China's capacity and production of methanol (1990-2012) to grow at 9x the rate of the rest of the world? The world does not care much for methanol; but China seems to have insatiable demand for the stuff.

China's supercharged growth for its demand of methanol is coming from multiple streams (Figure 47-49); however; the two most prominent end-

2 July 2014 Chemicals China's Coal to Olefins Industry

demand segments seem to be: 1) methanol for MTO (methanol to olefins), and 2) methanol for blending with gasoline. We also argue that China's supercharged growth rates are also being influenced by small base effect.

### Figure 47: China's methanol consumption by end-product demand

(Millions of tons)					2009-12
	2009	2010	2011	2012	CAGR %
Formaldehyde	5.28	5.65	6.64	5.85	3.5%
Gasoline blending	2.15	2.51	4.09	5.23	34.6%
DME	3.63	3.98	5.11	5.85	17.2%
Acetic Acid	1.65	2.30	2.30	2.46	<b>14.3%</b>
Methylamine	0.50	0.63	0.51	0.92	<b>23.1%</b>
MTBE	0.99	1.05	1.53	1.85	23.1%
МТО	0.00	2.30	2.55	4.62	41.6%
Others	2.31	2.51	2.81	4.00	<b>20.1%</b>
Total	16.51	20.93	25.54	30.79	<b>23.1%</b>
	% of to	tal methano	l consumpti	on	
	2009	2010	2011	2012	
Formaldehyde	32.0%	27.0%	<b>26.0%</b>	19.0%	
Gasoline blending	13.0%	<b>12.0%</b>	16.0%	17.0%	
DME	22.0%	<b>19.0%</b>	20.0%	<b>19.0%</b>	
Acetic Acid	<b>10.0%</b>	<b>11.0%</b>	<b>9.0%</b>	8.0%	
Methylamine	3.0%	3.0%	2.0%	3.0%	
МТВЕ	6.0%	5.0%	<b>6.0%</b>	6.0%	
мто	0.0%	11.0%	10.0%	15.0%	
Others	14.0%	12.0%	11.0%	13.0%	

Source: Zhengzhou Commodity Exchange, Deutsche Bank

### Figure 48: China's methanol consumption as % end product demand





Figure 49: China's methanol consumption (mln tons) by end product demand

On 01-November 2009, China's Bureau for Standardization released a document on "Methanol fuel for vehicle use". The document focused on M-fuel quality testing, fuel logo / labeling, fuel storage as well as transportation and production safety standards. On 29-February 2012, the Ministry of Industry and Information Technology of China started an M-blend fuel testing program in Shanxi, Shanghai, and Shaanxi provinces. This fuel testing program ended in 2013, without additional comment from Beijing authorities. Since November 2009, ten provincial governments have published standards (and are using M-blended petrol) for the blending methanol with gasoline:



Figure 50: Provinces in China that have issues methanol blending standards

China consumed 86.3 mln tons of gasoline in 2012 and used 5.23 mln tons of methanol for gasoline blending. It seems as if 6-7% of China's gasoline pool has been blended with methanol. Neither the national PRC government nor provincial governments have mandated the use of methanol as a gasoline blending agent. We suspect that much of China's "overcapacity" / buildup in methanol capacity (Figure 42) is in anticipation of a national roll out of a mandated or otherwise M15 gasoline standard. We suspect that the +30% CAGR growth (2009-12) of methanol into gasoline blending (Figure 47) could very easily remain super-charged over the next 5-year period (2013-18e). Any move by the Chinese government to approve a national M15 gasoline standard would logically hasten the growth of methanol consumption in China.

The other super-sized growth engine (2009-12) of methanol consumption in China has been MTO or methanol-to-olefins (Figure 47). Notwithstanding, we suspect that the recent 2010-12 CAGR growth rate (41.6% CAGR) will slow for two reasons: 1) base effect – even the most optimistic of government projections 2013-18e delivers a CAGR of only 40.3% (Figure 51); and 2) delays, non-approvals, inability to execute, lack of credit, environmental concerns etc. should continue to plague some of these projects. We estimate MTO capacity through 2018e of 5.86 mln tons vs. 1.76 mln tons in 2013. This would represent a 5-year (2013-18e) CAGR of 27.2% (Figure 51) vs. 41.6% over the previous 5-year period.

We suspect that overall methanol consumption growth in China will slow modestly to low double digit from its 2008-13 CAGR of 23.1% (Figure 47):

2 July 2014 Chemicals China's Coal to Olefins Industry

- Methanol into gasoline blending growth continues at break-neck speed (2013-18e);
- Methanol to olefins growth slows by 30% (from 40.3% to 27.2% CAGR) over the coming 5-years (Figure 51– "Case 1 to Case 3");
- Methanol into formaldehyde growth (Figure 47) does not seem to be going anywhere fast – despite China's construction boom. We suspect growth rates will moderate (2013-18e) as China slows its economy and frets about real estate bubbles;
- Methanol into Acetic acid should grow at GDP plus 1-2% according to the DB Global Chemical group – this seems about right given China's GDP growth rate +10% pa 2008-12. Acetic acid is principally used to produce plastic containers. With China's GDP growth rate slowing to 7-8% pa 2013-18e, methanol demand into acetic acid should also slow;
- DME and MTBE are also used for gasoline blending. We suspect methanol used for energy blending remains strong; although DME is also used as an additive for LPG, which is being substituted by piped natural gas.

Our estimate (Case 3 – DB Estimate) for slower MTO capacity growth 2013-18e (27.2% CAGR) vs. the government's Case1 (40.3% CAGR) can be seen in Figure 51 below.

		Chi	na Capa	city ad	ditions	(mtpa)		Cummula	ted Chi	na expe	ected ca	pacity (	mtpa)
		In operation	2014e	2015e	2016e	2017e	2018e	In operation	2014e	2015e	2016e	2017e	2018e
Methanol to Olefin ("MTO")													
6 1													
Case I	A services 100% weathered	1.70						1.70	4.70	4.70	1 70	4.70	4.70
Already commenced production	Assumes 100% realized	1.76				4.95	4.95	1.76	1.76	1.76	1.76	1.76	1.76
Received NDRC approval	Assumes 100% realized		1.40	0.60	0.00	1.25	1.25	0.00	1.40	2.00	2.00	3.25	4.50
PotentialNote I	Assumes 100% realized	1 76	1.20	1.00	0.60	1.50	1.50	0.00	1.20	2.20	2.80	3.05	3.30
	Total	1.70	2.00	1.00	0.00	1.50	1.50	1.70	4.30	3.30	0.50	8.00	9.30
								Case 1 : MITO	CAGR (20	13-2018e	):		40.3%
								Case 1: Metha	inol CAG	due to l	MTO (201	3-2018e):	40.3%
Case 2													
Already commenced production	Assumes 100% realized	1 76						1 76	1 76	1 76	1 76	1 76	1 76
Received NDRC approval	Assumes 80% realized	1	1.12	0.48		1.00	1.00	0.00	1.12	1.60	1.60	2.60	3.60
Potential	Assumes 50% realized		0.60	0.50	0.30	0.13	0.13	0.00	0.60	1.10	1.40	1.53	1.65
	Total	1.76	1.72	0.98	0.30	1.13	1.13	1.76	3.48	4.46	4.76	5.89	7.01
						-	-	Case 2 : MTO	CAGR (20	13-2018e	):		31.8%
								Case 2: Metha	anol CAG	R due to I	, . МТО (201	3.2018e).	31.8%
								cuse 2. meene		uuc to i		5 20100,	51.0/0
Case 3 (DB Estimate)													
Already commenced production	Assumes 100% realized	1.76						1.76	1.76	1.76	1.76	1.76	1.76
Received NDRC approval	Assumes 69% realized		0.82	0.54		0.87	0.87	0.00	0.82	1.36	1.36	2.23	3.10
Potential	Assumes 30% realized		0.36	0.00	0.18	0.23	0.23	0.00	0.36	0.36	0.54	0.77	1.00
	Total	1.76	1.18	0.54	0.18	1.10	1.10	1.76	2.94	3.48	3.66	4.76	5.86
			-		-	-		Case 3 : MTO	CAGR (20	13-2018e	):		27.2%
								Care 2: Mathe			, ·	2 2010-).	27.20/
								case 3: Metha	inoi CAGI	s aue to i	VIIU (201	3-2018e):	21.2%

#### Figure 51: Estimates of China's MTO capacity & growth 2013-2018e.

NOTES

1) For full list of methanol-to-olefins (MTO) and coal-to-olefins (CTO) projects, please refer to Appendix 3 and 4 respectively. 2) For Case 1, we assume the MTO capacity without completion date to be evenly distributed across 2017-18e.

Source: NDRC; Company data; Deutsche Bank

Global production of methanol (Figure 52) is dominated by China, with large global natural gas producers (Trinidad, Saudi Arabia, Iran and Russia) filling in the ranks. The shale gas revolution in North America is expected to increase methanol capacity from that region beginning in 2017e. All we can see in the near future is an oversupplied global methanol market.



China's methanol industry (not including CTO) is fragmented with the 10 largest methanol producers representing only 28% of estimated total capacity (Figure 53). Henan Coal and Chemical Industry Group is China's largest methanol producer with capacity of 1.9 million tons per year. Data from Baidu-Wenku leads us to believe that China has some 300 to 350 known producers of methanol with untold numbers of "tea-pot" producers.

In Figure 54, we list some of the larger methanol producers in Asia (x-China) and the Middle East. From the Middle East, Iran, Saudi and Oman are large, low-cost, natural gas producers of methanol. Looking across the world, Methanex (MX CN) is the largest producer of methanol with 7.3 mln tons of capacity.

## Figure 53: Methanol producers in China (2013)

COMPANY NAME:	BBRG Ticker	CAPACITY (mtpa)	LOCATION: Production facilities	Stand-alone / Integrated	COMMENTS:
China Methanol producers:					
Henan Coal and Chemical (HNCC)	Private	1.90	Henan	Integrated	Manufactures ethylene glycol (EG) from coal. Methanol sold to third parties.
Yankuang Group	Private	1.70	Shandong	Integrated	SOE engaged in coal mining, coal chemicals and power generation. Methanol is used for acetic acid
China BlueChem	3983 HK	1.60	Hainan, I-Mongolia	Stand-alone	SOE- part of the CNOOC Group. Manufactures gas and coal-based fertilizer;
					methanol principally sold to third parties to south-western China via distributors
Kingboard Chemicals	148 HK	1.40	Hainan, Chongqing	Partially integrated	Produces Printed Circuit Boards, Laminates and Chemicals. Methanol sold to third parties.
Shanghai Coking & Chemical Co.	Private	1.40	Shanghai	Partially integrated	Comprehensive coal-based chemical company. Largest city-gas producer in Shanghai;
0 0			Ū.	, ,	methanol products principally sold as vehicle fuels.
Shanghai Huayi	Private	1.40	Shanghai	Integrated	Comprehensive coal-based chemical company. Methanol to acetic acid, fibers & polymers.
Huadian Yulin Natural Gas Chemical	Private	1.40	Shaanxi	Integrated	Huadian bought into Shaanxi Yulin Natural Gas Chemical Company in 2010 to develop coal-chemical
					business. Methanol used for producing acetic acid. fibers & polymers.
Shandong Jiutai Chemical	CEGY SP	1.30	Inner Mongolia	Integrated	Methanol is used for producing DME / sold to spot market.
			Shandong		Methanol will be used as feedstock for the Company's MTO project due on line 2015e
Inner Mongolia Berun Group	Private	1.00	Inner Mongolia	Stand-alone	Methanol is sold to third parties on contract basis / at spot market
Chongging Kabeile	Private	0.85	Chongging	Stand-alone	Methanol is sold to third parties on contract basis / at spot market
Pingmei Lantian	Private	0.73	Henan	Integrated	Methanol is used for producing DME
East Hope Group	Private	0.70	Chongging	Integrated	Principal business is animal feed. Methanol is used for producing acetic acid and DME
ENN Group	Private	0.60	I-Mongolia / Jiangsu	Partially integrated	Parent company of ENN Energy (2688:HK); a leading city-gas operator in China;
					methanol is used for producing DME and for sale to third parties.
Donghua Energy	Private	0.60	Inner Mongolia	Stand-alone	Methanol is sold to third parties on contract basis / at spot market
Gansu Huating	Private	0.60	Gansu	Stand-alone	Methanol is sold to third parties on contract basis / at spot market
Shaanxi Xianyang	Private	0.60	Shaanxi	Stand-alone	Methanol is sold to third parties on contract basis / at spot market
Baofeng Energy	Private	0.40	Ningxia	Stand-alone	Methanol is sold to third parties on contract basis / at spot market
Jiangsu Sopo	600746 CH	0.54	Jiangsu	Stand-alone	Comprehensive coal-based chemical producer: methanol, baking soda, caustic soda & bleach.
Qinghai Golmud	Private	0.42	Qinghai	Stand-alone	Methanol is sold to third parties on contract basis / at spot market
Hebei Kaiyue	Private	0.40	Hebei	Partially integrated	Methanol is used for producing Formaldehyde and for sale to third parties
Henan Junma	Private	0.40	Henan	Partially integrated	Conglomerate engaged in power generation, hotel management & chemical production; methanol is used for producing acetic acid and for sale to third parties
Hulun Buir Dongneng	Private	0.40	Inner Mongolia	Integrated	Methanol is used for producing DME
Shanxi Feng Xi New Energy	Private	0.28	Shanxi	Stand-alone	Methanol is sold as vehicle fuel and downstream petrochemical producers
Total identified capacity (mlns tons)		20.62			
Remaing capacity (over 300 producers	)	28.77			
Total Methanol capacity in China (mln	s tons)	49.39			

Source: Company data; Deutsche Bank



## Figure 54: Methanol producers Asia (x-China) and Middle East

COMPANY NAME:	BBRG Ticker	CAPACITY (mtpa)	LOCATION: Production facilities	Stand-alone / Integrated	COMMENTS:
Other Asia / Middle East Methanol J	producers:				
Azerbaijan Methanol Co.	Private	N/A	Azerbaijan	Partially integrated	Methanol is used for producing methanol and Formaldehyde for sale
GPIC	Private	0.45	Bahrain	Stand-alone	Comprehensive petrochemical company; other products include urea and methanol
Gujarat Narmada	Private	0.30	India	Integrated	Methanol is used for producing acetic acid
Sojitz Corporation	2768 JP	0.70	Indonesia	Integrated	Methanol is sold to third parties on contract basis
Fanavaran Petrochemicals	Private	1.00	Iran	NA	ΝΑ
Kharg	Private	0.66	Iran	Stand-alone	Comprehensive petrochemical company
Zagros PC	Private	3.30	Iran	Stand-alone	Largest methanol producer in Iran; principally sold to overseas market
Mitsubishi CORP.	8058 JP	N/A	Japan	Integrated	Multi-line producer of chemical products: health care and industrial.
Mitsubishi Gas Chemical	4182 JP	2.43	Japan	Stand-alone	Methanol is sold to third parties on contract basis
Mitsui & Co., Ltd.	8031 JP	N/A	Japan	Integrated	Methanol is used for producing olefins
Nylex Berhad	NYL MK	N/A	Malaysia	Integrated	Multi-line producer of chemicals: vinyl-coated fabrics and plastics.
Petronas Chemicals	РСНЕМ МК	2.36	Malaysia	Integrated	Methanol is used for producing olefins: ethylene, propylene and derivatives;
Oman Methanol	Private	1.05	Oman	Stand-alone	Methanol is sold to third parties, principaly overseas;
Salalah Methanol	Private	1.30	Oman	Integrated	Methanol sold to overseas customers;
Qatar Fuel Additives (QAFAC)	Private	0.99	Qatar	Partially integrated	Methanol is used to produce MTBE and methanol for export
Ibn Sina	Private	1.00	Saudi Arabia	Partially integrated	Methanol is used to produce MTBE and methanol
Chemanol	CHEMANOL AB	0.23	Saudi Arabia	Integrated	Methanol is used for producing Formaldehyde and derivatives of Formaldehyde
SABIC	SABIC AB	2.43	Saudi Arabia	Stand-alone	Comprehensive petrochemical company. Methanol is principally for sale to third parties
SIPCHEM	SIPCHEM AB	1.20	Saudi Arabia	Stand-alone	A Saudi Arabia's producer with its methanol product shipped to overseas customers
Lee Chang Yung Chemical	1704 TT	N/A	Taiwan	Stand-alone	Comprehensive petrochemical company producing solvents, coatings, inks & antifreeze
			_		
Total identified capacity (mln tons)		19.39			

Source: Company data, Deutsche Bank

Figure 55 below caught our attention when looking at China's methanol trade flows. China's methanol imports increased 3-fold in 2009 through 2012 relative to average imports 2001-08. What happened in 2008-09? That is, other than the collapse of the world's financial system? Why in 2009 did China start to import 3x more methanol than previous years? China's methanol production 2008-09 (Figure 43) grew +18.1% vs. demand growth of 27.3% (Figure 45).



We think two things were happening that lead to this massive increase in China's methanol imports beginning 2009: 1) On 01-November 2009 China's Bureau of Standardization released a document on "Methanol fuel for vehicle use"; and 2) in 2009, Saudi Arabia and Iran added 1.83 mln tpa of new low-cost capacity, while in 2010, the Middle East added another 1.57 mln tons of new low-cost capacity (Figure 56).

We suspect that the large increase in China's methanol imports 2009 (Figure 55) were the result of 1) concern throughout 2009 that Methanol 15 (M15) blending with gasoline would soon become the national standard in China, and 2) at least partial substitution of high(er) cost coal-to-methanol production in China with lower cost imports from the Middle East (Figure 71). Just as a reference, we suspect that associated gas from the Middle East can be priced significantly below the US\$ 5/ mmBtu that we use as a reference price for US shale gas to methanol production (Figure 71). As an example if we price natural gas at US\$ 2.5/ mmBtu rather than US\$ 5.0/ mmBtu, the cost of methanol from natural gas production in our Figure 71 model would be US\$ 164 / ton not US\$ 240/ ton. Methanol imports into China remain high at around 5 million tons per year (2013e).

China exports a small amount of methanol to Korea, the Philippines and Indonesia. China's exports of methanol to Korea, the Philippines and Indonesia have consistently been less than 30,000 tons per year per export destination.

Worldwide methanol capacity is presented in Appendix 4 and 5.

#### Figure 56: Methanol – ME capacity additions vs. China imports from ME

('000 tpa)	2008	2009	2010	2011	2012
- Bahrain	425	425	450	450	45
- Iran	3,394	4,244	5,044	5,044	5,044
- Oman	1,050	1,050	1,700	2,350	2,35
- Saudi Arabia	6,200	7,180	7,280	7,280	7,28
- Qatar	990	990	990	990	99
Total ME Capacity	12,059	13,889	15,464	16,114	16,114
Total ME Capacity Marginal ME Capacity China's imports of methanol fror (1000 toa)	12,059 n ME (2008- 2008	13,889 1,830 12e) 2009	15,464 1,575 2010	<u>16,114</u> 650 2011	16,114  2012
Total ME Capacity Marginal ME Capacity China's imports of methanol fror ( ¹⁰⁰⁰ tpa)	12,059 n ME (2008- 2008	13,889 1,830 12e) 2009	15,464 1,575 2010	<u>16,114</u> 650 2011	<u>16,114</u>  2012
Total ME Capacity Marginal ME Capacity China's imports of methanol fror ('000 tpa) - Bahrain	12,059 n ME (2008- 2008 10	13,889 1,830 12e) 2009 150	15,464 1,575 2010 200	16,114 650 2011 160	16,114  2012 20
Total ME Capacity Marginal ME Capacity China's imports of methanol fror ( <i>'000 tpa</i> ) - Bahrain - Iran	12,059 n ME (2008- 2008 10 300	13,889 1,830 12e) 2009 150 900	15,464 1,575 2010 200 2,100	16,114 650 2011 160 2,300	16,114  2012 200 600
Total ME Capacity Marginal ME Capacity China's imports of methanol fror ( <i>1000 tpa</i> ) - Bahrain - Iran - Oman	12,059 m ME (2008- 2008 10 300 200	13,889 1,830 12e) 2009 150 900 400	15,464 1,575 2010 200 2,100 700	16,114 650 2011 160 2,300 1,000	16,114 
Total ME Capacity Marginal ME Capacity China's imports of methanol fror ( <i>1000 tpa</i> ) - Bahrain - Iran - Oman - Saudi Arabia	12,059 m ME (2008- 2008 10 300 200 400	13,889 1,830 12e) 2009 150 900 400 1,800	15,464 1,575 2010 200 2,100 700 700	16,114 650 2011 160 2,300 1,000 900	16,114 
Total ME Capacity Marginal ME Capacity China's imports of methanol fror ( <i>1000 tpa</i> ) - Bahrain - Iran - Iran - Oman - Saudi Arabia - Qatar	12,059 m ME (2008- 2008 10 300 200 400 20	13,889 1,830 12e) 2009 150 900 400 1,800 400	15,464 1,575 2010 200 2,100 700 700 420	16,114 650 2011 160 2,300 1,000 900 400	16,114  2012 200 600 900 1,600 300
Total ME Capacity Marginal ME Capacity China's imports of methanol fror ( <i>1000 tpa</i> ) - Bahrain - Iran - Iran - Oman - Saudi Arabia - Qatar China Imports from ME	12,059 n ME (2008- 2008 10 300 200 400 20 930	13,889 1,830 12e) 2009 150 900 400 1,800 400 3,650	15,464 1,575 2010 200 2,100 700 700 420 4,120	16,114 650 2011 160 2,300 1,000 900 400 4,760	16,114  2012 200 600 900 1,600 300 3,600

From the perspective of feedstock(s), 1) only Europe uses a small amount of petroleum to produce a small amount of methanol; 2) only China uses a lot of coal to produce a lot of methanol; and 3) most of the world uses cheap natural gas to produce methanol. Of the world's methanol production, 1) 70% comes from natural gas; 2) 11% comes from (China's) coal; and 3) 19% comes from oil products / naphtha / fuel oil into syngas into methanol.

Looking forward, we expect 1) the Middle East to continue to be the world's low cost supplier (price taker) of methanol; 2) China to be the world's marginal cost producer (price setter) of methanol; and 3) the US to aggressively grow its methanol capacity on the back of cheap shale gas that may cause problems for China's higher cost coal-to-methanol producers (Figure 57).



#### Figure 57: Global methanol production cost

Natural gas price reforms in China have driven up the price of domestic natural gas to such a degree that it is no longer competitive to coal in terms of cost (US\$) per mmBtu (Figure 4). This is good for coal producers; bad for natural gas producers – as price should start to weigh on demand; and horrendous for the environment. It also does not bode well for government policy, which has a stated objective to move 20-30% of primary energy consumption into natural gas from its current 3-4% of primary energy consumption.

In a recent (15 April 2014) publication of OGP – China Oil, Gas & Petrochemicals, we read that China is facing three "major challenges" in converting over to natural gas from coal:

- The replacement of coal with natural gas (will) require massive financial support (subsidies) not only for equipment but for higher natural gas costs. The coal price for producing a Kwh of heat is about Rmb 0.09, while that of natural gas is between 3 to 5x higher at Rmb 0.3 to 0.45/ kwh.
- China's natural gas pipeline system is controlled by its three oil giants: PetroChina (857 HK; Buy), Sinopec (386 HK) and CNOOC (883 HK; Hold). This dominance over China's natural gas pipeline infrastructure reduces the flow of needed capital into private pipeline infrastructure which deters the fast and efficient flow of natural gas across China.
- China had a natural gas shortage of more than 10 Bcm in 2013.

## Methanol synthesis from syngas

Methanol (CH₃OH) is produced from syngas. Syngas is produced from natural gas (methane), coal, oil / naphtha / fuel oil / coke, wood and any other carbon bearing biomass. In China, coal is the principal feedstock used to produce syngas which is thereafter converted into methanol. Syngas is converted into methanol in a gas phase reaction at high temperature and pressure under a copper-based catalyst (Figure 58). In this section we look at the conversion of syngas (a mixture of hydrogen and carbon monoxide) into methanol.

The production of methanol from syngas has become more important in China with the on-going development of the country's coal to chemical industry. China's coal-to-chemical industry began in the early 1980s with the production of synthetic ammonia from coal gas. China's coal-to-olefins industry began in the late 1980s with a pilot project developed by the Dalian Institute of Chemical Physics (DICP). China's first MTO project was completed in April 1991 and required 1 ton of methanol / day as feedstock. There is no evidence as to whether the original coal to methanol synthesis technology as developed by DICP was imported or developed domestically.

Methanol is industrially produced from purified syngas. Before converting pure syngas to methanol, raw syngas must go through 1) the Rectisol or Wet Sulfuric Acid process (Figure 26-27) to remove  $CO_2$  and sulfur impurities; and 2) the "shifting" process (Figure 28) to adjust / increase the ratio of H and CO to 2:1. Substances with a higher hydrogen-to-carbon ratio (methane) require less "shifting" in the "water-gas shift" process. Substances a lower hydrogen-to-carbon ratio (oil and oil products) require more "shifting" in the water-gas shift process. Less "water-gas shift" means lower cost in the form of energy and catalyst inputs to the "shift" process.



Converting syngas into methanol

China's modern coal-tochemicals industry began to develop in early 1980s.

The water-gas shift

Purified, shifted syngas is fed into a methanol synthesis reactor (Figure 58). The syngas (CO and H at an optimal ratio of 2:1) reacts across the surface of a fixed bed copper catalyst at a temperature of 300-400°C and pressure of 25-35 Mpa to form methanol (CH₃OH) vapor. The initial heat source for the reactor is provided by an external source. The reaction of syngas across the copper catalyst to produce methanol is exothermic – it produces its own heat.

In the fixed-bed reactor, the control of reaction temperature is achieved by removing reaction heat with un-reacted syngas. Hydrogen has a high heat capacity and as a result, hydrogen-rich, un-reacted syngas also serves as a carrier of heat away from the reaction / reactor vessel. In the syngas to methanol conversion process, syngas is used both as a feedstock and a heat (removal) carrier.

Hydrogen (H) has a high "heat capacity". "Heat capacity" is not the same as "heat(ing) value". "Heat capacity" is the ability of a substance to absorb heat. "Heating value" is the amount of heat released from a substance when combusted. Hydrogen has a high "heat capacity" which means that it can absorb more heat than most other substances. This property makes hydrogen an ideal candidate for absorbing the heat in the syngas-to-methanol reaction.

The product gas leaving the methanol reactor contains 5 to 8% methanol vapor by volume. The reaming 92-95% of the product gas is "un-reacted syngas" and water vapor which is a by-product of methanol synthesis. The un-reacted syngas is recycled back into the reactor for additional processing.

The boiling point for methanol is 65°C. The methanol vapor exiting the reactor at 300-400 °C is thereafter cooled by air fans and / or water cooled condensers so that the methanol vapor condenses into liquid Crude Methanol (contains c.18% of water by weight). The crude methanol will then be transferred to storage tanks for further refining and purification (Figure 59).

- Approximately 1 ton of coal is needed to produce 55 mcf of syngas;
- Approximately 77 mcf of Syngas is required to produce 1 ton of methanol; and
- Approximately 1.4 tons of coal (feedstock) is required to produce 1 ton of methanol.

## Figure 58: Reactor for methanol synthesis



Source: U.S. Department of Energy., Deutsche Bank



Source: Deutsche Bank

Methanol is normally synthesized under a copper-based catalyst (a mixture of copper, zinc oxide and alumina). Copper is the catalyst. Zinc oxide is used to 1) react with alumina to avoid dimethyl ether (DME) formation, 2) prevent the copper from being poisoned by forming zinc sulfide, and 3) prevent agglomeration or "caking" of copper particles. Zinc oxide is not a catalyst. Zinc oxide is normally added to the copper catalyst to avoid catalyst poisoning. Zinc oxide will react with sulfur in hydrogen sulfide to form zinc sulfide. Hydrogen sulfide is the major substance that causes catalyst poisoning during methanol synthesis. The catalyst is said to be "poisoned" when the catalyst no longer functions optimally and needs to be replaced.

The "Claus Process" (Figure 26) is a desulfurizing process used in the conversion of raw syngas to pure syngas. The Claus Process converts hydrogen sulfide to elemental sulfur. The "Wet Sulfuric Acid Process" (Figure 27) is also used in the process of converting raw syngas into pure syngas. The Wet Sulfuric Acid Process converts hydrogen sulfide into sulfuric acid. Both of these processes reduce syngas hydrogen sulfide that would otherwise poison the copper catalyst that is used to convert purified syngas into methanol.

## Methanol refining:

Methanol distillation is achieved in two distinct distillation columns – a topping column and a refining column (Figure 60-61). The topping column is used for removing impurities with low boiling points ("light ends"). "Light ends" are substances with boiling point lower than that of methanol ( $65^{\circ}$ C). By heating at a temperature slightly lower than the boiling point of methanol ( $65^{\circ}$ C), the "light ends" will be vaporized and stripped out from the top of topping column.

After the "topping" process, the remaining liquid (mainly water and methanol) is transferred to a "refining column" for further processing. During the refining process, the liquid is boiled again at a temperature higher than 65°C but less than 100°C. At a temperature higher 65°C, methanol vaporizes, rises to the top of refining column, and condenses back to liquid methanol for storage. The temperature at the top of the refining column is cooler than at the bottom of the column where the heat source is located. This differential in temperature causes the methanol vapor to condense into liquid towards the top of the column. The water is left in the refining column.

Figure 60: Methanol distillation column in Shenhua Ningxia project



Source: Linde, Deutsche Bank

Page 58





## Methanol production costs

In the financial models below, we consider the costs to produce methanol in China.

In Figure 68, we look at: 1) the cost to produce methanol in Inner Mongolia from self-sourced coal; vs. 2) the cost to produce methanol in Inner Mongolia from 3rd party purchased coal; in both cases the transport of methanol to east cost China (Jiangsu province) is considered.

In Figure 69, we look at 1) the cost to produce methanol in Inner Mongolia from self-sourced coal plus transport cost to the east coast (Jiangsu) of China; vs. 2) the cost to produce methanol on the east coast of China (Jiangsu) from 3rd party purchased coal.

In Figure 70, we look at 1) the cost to produce methanol in Inner Mongolia from self-sourced coal plus the transport cost to the east coast (Jiangsu) of China; vs. 2) the cost to produce methanol on the east coast of China (Jiangsu) from 3rd party purchased natural gas.

Finally, in Figure 71, we look at 1) the cost to produce methanol in Inner Mongolia from self-sourced coal plus the transport cost to the east coast (Jiangsu) of China; vs. 2) the cost to produce methanol in North America using US\$ 5.0/ mmBtu Henry Hub natural gas.

We conclude that:

1. The all in cost to produce methanol from self-sourced coal in Inner Mongolia and deliver it to east coast China (US\$ 237/ ton of methanol)

is only slightly less expensive than producing methanol on the east coast of China sourcing it via 3rd party coal purchases (US\$ 253/ ton).

- The all in cost to produce methanol from self-sourced coal in Inner Mongolia and deliver it to east coast China (US\$ 263/ ton of methanol) is materially less expensive than producing methanol on the east coast of China and sourcing it via 3rd party natural gas purchases (US\$ 505/ ton).
- 3. The all in cost to produce methanol from 3rd party coal in Inner Mongolia and deliver it to east coast China (US\$ 263/ ton of methanol) is slightly more expensive than producing methanol on the east coast of China and sourcing it via 3rd party coal purchases (US\$ 253/ ton).
- 4. The all in cost to produce methanol from coal in China is quite similar to the cost of methanol production in the USA assuming US\$ 5.0 / mmBtu for the price of natural gas. If we insert an "associated" natural gas price assumption of US\$ 2.50/ mmBtu in this model, our all in production cost would be US\$ 164/ ton methanol.

As per NDRC data, the average wholesale transaction price of methanol in China's thirty six largest cities can be seen in Figure 62 and Figure 63. The data tells us that: 1) the average wholesale transaction price of methanol in China is being set from the marginal cost of production using natural gas (not coal) as a feedstock; and that 2) coal based methanol production in China should be wildly profitable.



#### Figure 62: Wholesale price – China methanol (US\$ / ton)

#### Figure 63: Wholesale price – China methanol (Rmb / ton)



### Figure 64: Key Assumptions for Methanol cost analysis

#### Key Assumptions:

- 1. Assumes 1.4 tons of bituminous coal is used to produce 1 ton of methanol
- 2. Assumes that the coal cost from self-owned mines is 20% less than coal purchased from third parties
- 3. Assumes that all methanol is sold into eastern China markets and competes with Middle Eastern imports
- 4. Assumes the production capacity of CTM and GTM to be 600k TPA methanol
- 5. Assumes the total investment of CTM project (6.0 billion Rmb) is 40% of CTO project (15.0 billion Rmb); and the depreciable amount (4.8 billion Rmb) to be 80% of CTM's total investment (6.0 billion Rmb)
- 6. Assumes the total investment of GTM project (China) to be 5.5 billion Rmb, which is 30% less than a similar plant in the US (7.8 billion Rmb) estimated by Valero
- 7. Assumes the useful life of plant & machinery to be 15 years and the depreciation expenses spread evenly over the olefins products

Source: Deutsche Bank

## Figure 65: Sensitivity of coal price on methanol cost – Inner Mongolia "self-owned coal mines" vs "purchased coal"

Case 1 : Inner	Mongolia / self-ov	vned coal mines	Case 2 : Inner Mongolia / purchased coal				
Change in coal price	Methanol cost (USD / ton)	Compare with current methanol cost	Change in coal price	Methanol cost (USD / ton)	Compare with current methanol cost		
-10%	232	-2.0%	-10%	247	-2.3%		
-5%	234	-1.0%	-5%	250	-1.2%		
0%	237	0.0%	0%	253	0.0%		
+5%	239	1.0%	+5%	256	1.2%		
+10%	242	2.0%	+10%	259	2.3%		
+15%	244	3.0%	+15%	262	3.5%		
+20%	246	4.0%	+20%	265	4.6%		
+30%	251	6.1%	+30%	271	7.0%		
+50%	261	10.1%	+50%	283	11.6%		

Source: Deutsche Bank

## Figure 66: Sensitivity of coal price on methanol cost – Inner Mongolia "self-owned coal mines" vs Eastern China "purchased coal"

Case 3 : Inner	Mongolia / self-ow	ned coal mines	Case 4 : Eastern China / purchased natural gas			
Change in coal price	Methanol cost (USD / ton)	Compare with current methanol cost	Change in coal price	Methanol cost (USD / ton)	Compare with curre methanol cost	
-10%	232	-2.0%	-10%	251	-4.6%	
-5%	234	-1.0%	-5%	257	-2.3%	
0%	237	0.0%	0%	263	0.0%	
+5%	239	1.0%	+5%	269	2.3%	
+10%	242	2.0%	+10%	275	4.6%	
+15%	244	3.0%	+15%	281	6.9%	
+20%	246	4.0%	+20%	287	9.2%	
+30%	251	6.1%	+30%	299	13.8%	
+50%	261	10.1%	+50%	323	22.9%	

Source: Deutsche Bank

## Figure 67: Sensitivity of coal price on methanol cost – Inner Mongolia "self-owned coal mines" vs Eastern China "purchased natural gas"

Case 5 : Inner Mongolia / self-owned coal mines			Case 6 : Eastern China / purchased natural gas				
Change in coal price	Methanol cost (USD / ton)	Compare with current methanol cost	Change in coal price	Methanol cost (USD / ton)	Compare with current methanol cost		
-10%	238	-2.2%	-10%	464	-8.1%		
-5%	241	-1.1%	-5%	485	-4.1%		
0%	244	0.0%	0%	505	0.0%		
+5%	247	1.1%	+5%	526	4.1%		
+10%	249	2.2%	+10%	546	8.1%		
+15%	252	3.4%	+15%	567	12.2%		
+20%	255	4.5%	+20%	587	16.2%		
+30%	260	6.7%	+30%	628	24.4%		
+50%	271	11.2%	+50%	710	40.6%		

Source: Deutsche Bank

## Figure 68: CTM cost model - Inner Mongolia "self-owned coal mines" vs. "purchased coal"

	Case 1 Inner Mongolia Self-owned coal mines	Case 2 Inner Mongolia Purchased coal	
Coal cost			
Coal used for feedstock			
Coal price (ex-plant)	207	258	RMB/ton coal
Coal price (ex-plant)	34	42	USD/ton coal
Coal consumption per ton methanol	1.40	1.40	ton coal/ton methanol
Coal feedstock cost per ton methanol Coal feedstock cost per ton methanol	289 48	362 59	RMB/ton methanol USD/ton methanol
Coal transportation			
Transportation cost per ton coal	N/A	20	RMB/ton coal
Transportation cost of coal per ton methanol	N/A	28	RMB/ton methanol
Electricity			
Usage per ton methanol	500	500	Kwh/ton methanol
Electricity tariff	0.35	0.35	RMB/Kwh
Total electricity cost per ton methanol	175	175	RMB/ton methanol
Other OPEX	470	470	
Depreciation	1/8 50	178 50	RMB/ton methanol
Labor and management overnead	50	50	
Water price	3.50	3.50	RMB/ton water
Water cost	53	53	RMB/ton methanol
Effluent treatment charges	0.05	0.05	DMD/ton water
Effluent amount	0.95	0.95	ton effluent/ton methanol
Effluent treatment cost	29	29	RMB/ton methanol
Steam usage	1 20	1 20	ton steam/ton methanol
Steam price	2.00	2.00	RMB/ton steam
Steam cost	2.40	2.40	RMB/ton methanol
R&M and insurance	40	40	RMB/ton methanol
Other production supplies	50	50	RMB/ton methanol
(e.g. Catalyst replacement and consumables)			
Transportation fee of methanol product			
Distance	1,889	1,889	km
Transportation cost	0.30	0.30	RMB/ton km
Methanol transportation: Inner Mongolia to Jiangsu	567	567	
_			RMB/ton
Total production cost per ton methanol	1,433	1,533	RMB/ton methanol
	237	253	USD/ton methanol
Source: NDRC CEIC Doutscho Book			

## Figure 69: CTM cost model - Inner Mongolia "self-owned coal mines" vs. E. China "purchased coal"

	Case 3 Inner Mongolia Self-owned coal mines	Case 4 Eastern China Purchased coal	
Coal cost			
Coal used for feedstock			
Coal price (ex-plant)	207	530	RMB/ton coal
Coal price (ex-plant)	34	88	USD/ton coal
Coal consumption per ton methanol	1.40	1.40	ton coal/ton methanol
Coal feedstock cost per ton methanol	290	742	RMB/ton methanol
Coal feedstock cost per ton methanol	48	121	USD/ton methanol
Coal transportation			
Transportation cost per ton coal	N/A	60	RMB/ton coal
Transportation cost of coal per ton methanol (intra-province : Jiangsu)	N/A	84	RMB/ton methanol
Electricity			
Usage per ton methanol	500	500	Kwh/ton methanol
Electricity tariff	0.35	0.65	RMB/Kwh
Total electricity cost per ton methanol	175	325	RMB/ton methanol
Other OPEX			
Depreciation	178	178	RMB/ton methanol
Labor and management overhead	50	60	RMB/ton methanol
Water price	3.50	3.50	RMB/ton water
Water usage	15	15	ton water/ton methanol
Water cost	53	53	RMB/ton methanol
Effluent treatment charges	0.95	1.30	RMB/ton water
Effluent amount		30	ton effluent/ton methanol
Effluent treatment cost	29	39	RMB/ton methanol
Steam usage	1.20	1.20	ton steam/ton methanol
Steam price	2.00	2.50	RMB/ton steam
Steam cost	2.40	3.00	RMB/ton methanol
R&M and insurance	40	48	RMB/ton methanol
Other production supplies	50	60	RMB/ton methanol
(e.g. Catalyst replacement and consumables)			
Transportation fee of methanol product	1 000		
Distance	1,889	0	km
I ransportation cost Methanol transportation:	0.30	0.30	RIVIB/ton Km
Inner Mongolia to Jiangsu	567	U	
······			RMB/ton
Total production cost per ton methanol	1,433	1,592	RMB/ton methanol
	237	263	USD/ton methanol

Source: NDRC, CEIC, Deutsche Bank

## Figure 70: CTM / GTM cost models - Inner Mongolia "self-owned coal mines" vs. E. China "purchased natural gas"

	Case 5 Case 6 Inner Mongolia Eastern China Self-owned coal mines Purchased natural gas				
Coal cost					
Coal/Natural Gas used for feedstock					
Coal / NG price	237	2.42	RMB/ton coal (m3 NG)		
Coal / NG price	39	0.40	USD/ton coal (m3 NG)		
Coal / NG consumption per ton methanol	1.40	1,025	ton coal (m3 NG)/ton methanol		
Coal / NG feedstock cost per ton methanol	332	2,481	RMB/ton methanol		
Coal / NG feedstock cost per ton methanol	55	410	USD/ton methanol		
Coal transportation					
Transportation cost per ton coal	N/A	N/A	RMB/ton coal		
Transportation cost of coal per ton methanol	N/A	N/A	RMB/ton methanol		
Electricity					
Usage per ton methanol	500	80	Kwh/ton methanol		
Electricity tariff	0.35	0.65	RMB/Kwh		
Total electricity cost per ton methanol	175	52	RMB/ton methanol		
Other OPEX					
Depreciation	178	258	RMB/ton methanol		
Labor and management overhead	50	60	RMB/ton methanol		
Water price	3.50	3.50	RMB/ton water		
Water usage	15	15	ton water/ton methanol		
Water cost	53	53	RMB/ton methanol		
Effluent treatment charges	0.95	1.30	RMB/ton water		
Effluent amount		30	ton effluent/ton methanol		
Effluent treatment cost	29	39	RMB/ton methanol		
Steam usage	1.20	1.20	ton steam/ton methanol		
Steam price	2.00	2.50	RMB/ton steam		
Steam cost	2.40	3.00	RMB/ton methanol		
R&M and insurance	40	48	RMB/ton methanol		
Other production supplies	50	63	RMB/ton methanol		
(e.g. Catalyst replacement and consumables)					
Transportation fee of methanol product	4 000	0	luna		
Distance	1,889	0 20	KITI		
Mothanol transportation:	0.30	0.30	RIVIB/IOTI KITI		
Inner Mongolia to Jiangsu	507	U			
			RMB/ton		
Total production cost per ton methanol	1,475	3,056	RMB/ton methanol		
	244	505	USD/ton methanol		

Source: NDRC, CEIC, Deutsche Bank

## Figure 71: CTM / GTM cost models - Inner Mongolia "self-owned coal mines" vs. N. America purchased natural gas"

	Case 7 Case 8 Inner Mongolia The United States Solf owned coal minos Burchasod patural gas					
Coal cost	Self-owned coal mines	Purchased natural gas				
Coal/Natural Gas used for feedstock						
Coal / NG price	250	1.13	RMB/ton coal (m3 NG)			
Coal / NG price	41	5.00	USD/ton coal (mmBtu)			
Coal / NG consumption per ton methanol	1.40	30	ton coal (mmBtu NG)/ton methanol			
Coal / NG feedstock cost per ton methanol	350	923	RMB/ton methanol			
Coal / NG feedstock cost per ton methanol	58	150	USD/ton methanol			
Coal transportation						
Transportation cost per ton coal	N/A	N/A	RMB/ton coal			
Transportation cost of coal per ton methanol	N/A	N/A	RMB/ton methanol			
Electricity						
Usage per ton methanol	500	80	Kwh/ton methanol			
Electricity tariff	0.35	0.36	RMB/Kwh			
Total electricity cost per ton methanol	175	29	RMB/ton methanol			
Other OPEX						
Depreciation	178	214	RMB/ton methanol			
Labor and management overhead	50	60	RMB/ton methanol			
Water price	3.50	3.50	RMB/ton water			
Water usage	15	15	ton water/ton methanol			
Water cost	53	53	RMB/ton methanol			
Effluent treatment charges	0.95	2.00	RMB/ton water			
Effluent amount		30	ton effluent/ton methanol			
Effluent treatment cost	29	60	RMB/ton methanol			
Steam usage	1.20	1.20	ton steam/ton methanol			
Steam price	2.00	2.00	RMB/ton steam			
Steam cost	2.40	2.40	RMB/ton methanol			
R&M and insurance	40	48	RMB/ton methanol			
Other production supplies	50	63	RMB/ton methanol			
(e.g. Catalyst replacement and consumables)						
Transportation fee of methanol product	1.000					
Distance	1,889	0	km			
I ransportation cost	0.30	0.00	RMB/ton km			
meutatioi transportation: Inner Mongolia to Jiangsu	007	U				
			RMB/ton			
Total production cost per ton methanol	1,493	1,451	RMB/ton methanol			
	247	240	USD/ton methanol			

Source: NDRC, CEIC, Deutsche Bank

2 July 2014 Chemicals China's Coal to Olefins Industry

## Coal to olefins

We have analyzed above the transformation of coal to syngas; and syngas to methanol – with integrated cost models. We will now consider the process of transforming methanol into "olefins", which for all practical purses means transforming methanol into ethylene and propylene.

Olefins can be defined as any unsaturated hydrocarbon containing one or more pairs of carbon atoms linked by a double bond. A "double bond" is a bond where two electron pairs are shared between two atoms. In layman's terms, a double bond enables a stronger linkage between the two carbon atoms but it also makes the compound more reactive in that each carbon atom is unsaturated (ie - looking to align with additional hydrogen atoms). The two most important olefins are ethylene and propylene as they form the backbone of the petrochemicals market. The highly reactive double bond makes the olefin molecule ideal for conversion to many polymers such as: polyethylene, polypropylene, polystyrene, ethylene dichloride, ethylene oxide and others.

Olefins are produced worldwide from a wide array of feedstocks including ethane, liquefied petroleum gases (LPG / Propane & Butane), gas oil / diesel and naphtha. Today, c.67% of global olefins production comes from naphtha / naphtha mix feedstock(s) while c.32% comes from ethane and mixtures of ethane, propane and butane or LPG (Figure 73).





Source: Deutsche Bank



China accounts for 100% of the world's dedicated coal-to-olefins production; yet, olefins produced in China using coal / syngas / methanol as feedstock continues to represent only about 3% of China's olefins capacity (Figure 74) or less than 1% of global olefins capacity (Figure 73-74). China began industrialized olefins production using coal / syngas / methanol as feedstock in 4009 (Shenhua Baotou – CTO facility).

### Figure 73: Global Ethylene feedstock mix (2013)

#### Figure 74: China Ethylene feedstock mix (2013)



According to IHS, ethylene capacity in China at year-end 2013 was 17.8 million tons or 11.6% of the world's total capacity (Appendix 6-10). China's feedstock of choice for ethylene production (Figure 74) is naphtha / naphtha mix (c.40% / c.97%). Ethylene production in China is skewed to SOE's Sinopec (386.HK) and PetroChina (857.HK). Together, these two SOE own / operate roughly 58% and 22% of China's ethylene capacity. China's CTO/ MTO capacity is relatively small with 5 facilities in operation and total olefin capacity of 2.36 mln tons/ year. Ignoring both international and / or domestic MTO pilot programs:

- 1. Only China has commercial CTO/ MTO facilities in operation (2.36 mln tpa); no other country in the world has producing CTO/ MTO facilities;
- China's CTO/ MTO operating capacity represents ~1.5% of year-end 2013 global ethylene capacity (153.2 mln tpa);
- 3. China has another 20.3 mln tpa of NDRC Approved (6.9 mln tpa) and/ or "Pre-approved" (13.4 mln tpa) CTO/ MTO capacity (Appendix 1-2);
- 4. China's Approved (6.9 mln tpa) and Pre-approved (13.4 mln tpa) MTO/ CTO capacity represents another 13.2% of 2013 global ethylene capacity – which is meaningful if it were all to come on-line in at once. Bottom line ethylene grows at 1-1.5% of global GDP growth. With global GDP growth of 3-3.5% pa, the world should add 4-6k Tpa / year of ethylene capacity.
- Of China's total Approved (6.9 mln tpa) and Pre-approved / Possible (13.4 mln tpa) CTO / MTO capacity, we believe a total of approximately 5.9 mln tpa of MTO (Figure 51) and 5.1 mln tpa of CTO (Figure 75) will be operating in China by year-end 2018.

6. By year-end 2018, China's CTO / MTO operating capacity could represent as much as 5.9% of global ethylene capacity.

#### Figure 75: Estimates of China's CTO capacity & growth 2013-2018e.

		China Capacity additions (mtpa)					Cummula	ted Chi	na expe	cted ca	pacity (	mtpa)	
Coal to Olefin ("CTO")	I	In operation	2014e	2015e	2016e	2017e	2018e	In operation	2014e	2015e	2016e	2017e	2018e
Case 1													
Already commenced production	Assumes 100% realized	0.60						0.60	0.60	0.60	0.60	0.60	0.60
Received NDRC approval	Assumes 100% realized				1.20	1.20		0.00	0.00	0.00	1.20	2.40	2.40
Potential Note 1	Assumes 100% realized				1.20	4.05	4.85	0.00	0.00	0.00	1.20	5.25	10.10
	Total	0.60	0.00	0.00	2.40	5.25	4.85	0.60	0.60	0.60	3.00	8.25	13.10
								Case 1 : CTO	CAGR (201	.3-2018e)	:		85.3%
								Case 1: Methanol CAGR due to CTO (2013-2018e)				85.3%	
Case 2												,	
Already commenced production	Assume 100% realized	0.60						0.60	0.60	0.60	0.60	0.60	0.60
Received NDRC approval	Assume 80% realized				0.96	0.96		0.00	0.00	0.00	0.96	1.92	1.92
Potential	Assume 50% realized				0.60	2.03	2.43	0.00	0.00	0.00	0.60	2.63	5.05
	Total	0.60	0.00	0.00	1.56	2.99	2.43	0.60	0.60	0.60	2.16	5.15	7.57
								Case 2 : CTO CAGR (2013-2018e) : 6					66.0%
								Case 2: Methanol CAGR due to CTO (2013-2018e):				66.0%	
Coso 2 (DP Estimate)													
Already commenced production	Assume 100% realized	0.60						0.60	0.60	0.60	0.60	0.60	0.60
Received NDRC approval	Assume 70% realized	0.00			0.84	0.84		0.00	0.00	0.00	0.84	1.68	1.68
Potential	Assume 28% realized				1.08	1.19	0.55	0.00	0.00	0.00	1.08	2.27	2.82
	Total	0.60	0.00	0.00	1.92	2.03	0.55	0.60	0.60	0.60	2.52	4.55	5.10
								Case 3 : CTO CAGR (2013-2018e) : 5:					53.4%
								Case 3: Methanol CAGR due to CTO (2013-2018e):					53.4%

1) For full list of methanol-to-olefins (MTO) and coal-to-olefins (CTO) projects, please refer to Appendix 3 and 4 respectively.

2) For Case 1, we assume the CTO capacity without completion date to be evenly distributed across 2017-18e.

Source: NDRC: Company data: Deutsche Bank

## Ethylene

Ethylene is a colorless and flammable gas with a faint "sweet and musky" odor. The chemical formula for ethylene is C₂H₂. Globally, ethylene is used in producing 1) polyethylene (60%), 2) ethylene oxide (15%), 3) ethylene dichloride and ethylbenzene (16%) and 4) other chemical products (9%).

Polyethylene (PE) is a light, durable and elastic plastic material. PE is the most widely used plastic in the world and is used principally in the production of food and drink containers, plastic bags, and packaging materials.

Ethylene oxide (EO) is a colorless and flammable ( $C_2H_4O$ ). It is principally used in the production of ethylene glycols (MEG). MEG is a major chemical feedstock / intermediate product for the production of PET, which in its own right is a feedstock for making containers and synthetic fibers. EO is also used in the production of solvents, textile, detergents and personal care products.

2 July 2014 Chemicals China's Coal to Olefins Industry

**Ethylene Dichloride (EDC)** is a colorless liquid with chloroform-like odor  $(C_2H_4C_{12})$ . It is principally used in the production of polyvinyl chloride (PVC). PVC is used for making pipes, electric cables and construction materials.

**Ethylbenzene** is a colorless and flammable liquid with a gasoline-like odor  $(C_8H_{10})$ . It is used as a chemical intermediate in the manufacture of polystyrene – an inexpensive plastic material for making food and drink containers with high insulation ability.

## Propylene

Propylene is a colorless gas with a weak and unpleasant smell. Propylene is the second most important chemical building block after ethylene. The chemical formula for propylene is  $C_3H_6$  and globally it is used in producing 1) polypropylene (60%), 2) Propylene oxide (7%) and 3) other chemical products.

**Polypropylene (PP)** is a light, elastic plastic material which is resistant to many chemical solvents and acid, but not as sturdy as polyethylene (PE). PP is principally used in the production of packaging materials, plastic parts, reusable containers and automotive components containers.

**Propylene oxide** is a colorless and volatile liquid ( $C_3H_6O$ ). It is used as an intermediate in the manufacture of polyurethane for decoration purposes.

## Producing ethylene & propylene

In most parts of the world ethylene and propylene are produced via the cracking of naphtha and / or ethane under steam and pressure ("steam-cracking"). The steam cracking of naphtha and / or ethane are well established, globally accepted processes for producing industrial olefins.

Notwithstanding, the cost of converting naphtha into ethylene and propylene is relatively high which stems from the current high price (globally) of crude oil. Unlike crude oil / naphtha, ethane (a component of natural gas liquids) is priced regionally (not globally) and driven by regional natural gas supply-demand factors as well as government specific / company specific strategic goals.

Natural gas in China is expensive (US\$ 8-12/ mcf) and the price is influenced by natural gas imports from faraway places like Turkmenistan and Australia (LNG). Natural gas in North America is relatively cheap (US\$ 4-5/ mcf) due to recent discoveries of abundant shale gas; whereas natural gas in the Middle East and Africa can arguably be said to have a cost of US\$ 0.0/ mcf in that it is "associated gas" – associated with the extraction of crude oil from reservoirs.

China's drive to produce olefins from coal / syngas / methanol is an attempt to use a lower cost hydrocarbon (coal) relative to oil and / or China natural gas. We are not sure if China's drive to produce olefins from coal is based purely on economics or if it is also based on the fact that China has an abundance of coal and limited supplies of crude oil and natural gas - strategic rational.

Regardless, China is trying to utilize its abundantly inexpensive coal reserves to produce high-value olefin products that it would otherwise produce from

Olefin feedstocks

High cost oil / high cost naphtha

Natural gas – high cost China; low cost N. America, Middle East and parts of Africa

Strategic and economic

China leading the way – pushing the envelope at least imported oil and / or natural gas. However, unlike the "steam cracking" of naphtha / ethane to produce olefins; and unlike the "gasification" of coal to produce syngas; and unlike the "synthesis" of methanol from syngas; the synthesis of olefins from methanol remains commercially under-developed. If China were to be successful in developing a commercial coal-to-olefins industry, it would be a first world-wide.

Methanol is not "steam-cracked" to produce olefins. The process of converting methanol to olefins involves a complex sieve-catalyst (SAPO-34). The SAPO-34 catalyst was originally discovered by the Union Carbide Corporation in 1982 and consists of silicon, aluminum, phosphate and oxygen.

Despite on-going efforts to commercialize methanol to olefins (MTO), there seems to be only 3 demonstration plants outside of China; 3 demonstration plants inside of China; and 5 commercial operating plants inside of China.

Outside of China there are three pilot MTO facilities: 1) a UOP pilot plant that was constructed in 1988, location undisclosed and we suspect the plant is no longer operating; 2) an INEOS pilot plant constructed in 1995 and located in Norway; and 3) a TOTAL pilot plant constructed in 2009 and located in Belgium. The methanol input capacity for these pilot projects was 1 kilogram per day; 1 ton per day and 10 tons per day respectively. The conversion rate of current MTO plants is ~3 tons of methanol to 1 ton of olefins.

Inside of China, the Dalian Institute of Chemical Physics (DICP) has built three pilot MTO projects: 1) in 1993 located in Dalian, 2) in 1995 located in Shanghai; and 3) in 2006 located in Shaanxi province. The early 1993 MTO pilot facility had methanol input capacity of 0.8 ton per day; the 2006 pilot facility had methanol input capacity of 82 tons per day (10k tpa of olefin output). In addition to these three DICP pilot projects, China currently has five CTO-MTO facilities in operation: 1) the Shenhua Baotou CTO project; 2) the Shenhua Ningxia MTP project; 3) the Datang Duolun MTO project; 4) the Sinopec Zhongyuan "S-MTO" project; and 5) the Ningbo Heyuan MTO project.

Figure 76: China's CTO-MTO projects currently in operations

SAPO – which means frog in Spanish

Limited MTO worldwide

Dalian Institute of Chemical Physics seems to play a big role in China's CTO/ MTO developments

Notes

Vertical integrated

Vertical integrated

Vertical integrated

Vertical integrated

Not vertical integrated

0.60

2.36

#### **Project Name** Location Olefin Shareholder(s) of project vehicle Process technology capacity (min tpa) Inner Mongolia DMTO by DICP Shenhua Baotou CTO Project (Phase I) China Shenhua Energy (1088 HK): 100% 0.60 Shenhua Ningxia MTP Project (Phase I) MTP by Lurgi 0.50 Shenhua Group : 51% Ningxia Ningxia provincial government : 49% **Datang Duolun MTP Project** Datang International Power (991 HK) : 60% Inner Mongolia MTP by Lurgi 0.46 China Datang Group : 40% Sinopec Zhongyuan SMTO project Sinopec (386 HK) : 93.51% Henan S-MTO by Sinopec 0.20 Henan provincial government : 6.49%

Zhejiang

DMTO by DICP

Ningbo Heyuan Chemical : 100%

Source: IHS; ICIS; Company specific data; Deutsche Bank

Ningbo Heyuan MTO project
In the following sections of the report, we look at:

- The synthesis of olefins from methanol;
- The technology used in China and other parts of the world to synthesize olefins from methanol; and
- The "SAPO-34" catalyst.

In concluding our CTO/ MTO remarks, we take a look at:

The environmental issues of water use / conservation and CO₂ emissions that continue to be debated by the authorities and continue to plague / delay project approvals in China's "Coal-to" industry.

## Converting methanol to olefins:

Figure 77 and Figure 78 present high-level views of the steps involved in the conversion of coal to syngas to methanol to olefins (MTO):



#### Figure 78: General steps for coal to olefins process

Coal gasification	The coal is gasified into "Syngas" (a mixture primarily consists of Carbon Monoxide and Hydrogen) in high temperature / pressure at controlled amount of
	oxygen
Syngas shifting & cleaning	"Syngas" is 1) purified to remove impurities; and 2) adjust the Carbon Monoxide and Hydrogen ratio to a lowel suitable for methanel suntheric
Methanol synthesis	Methanol is produced by reaction between Carbon Monoxide and Hydrogen at high temperature / pressure under catalyst
Olefins synthesis	Olefins (mainly Ethylene and Propylene) is produced by catalytic cracking of methanol.
	Catalytic cracking means breaking the methanol to produce olefins under the presence of catalyst
Separation	Olefins is 1) separated into Ethylene and Propylene; and 2) undergo further processing to saleable products
auroo: Douteobo Pank	

# Olefins synthesis and catalyst re-generation:

Methanol, recycled water and un-reacted methanol are fed into a fluidized-bed catalytic reactor. "Fluidized" means that the catalyst particles can move freely inside the reactor and not locked-down in a single, specific location. The reactor is also equipped with a catalyst regenerator and a recycle reactor (Figure 79). The optimal operating conditions for an MTO fluidized-bed catalytic reactor are 350°C and 0.2MPa of pressure.

The effluent of the methanol fluidized-bed catalytic reactor is a mixture of ethylene ( $C_2H_4$ ), propylene ( $C_3H_6$ ) – collectively referred to as olefins; methanol ( $CH_3OH$ ); water ( $H_2O$ ); carbon dioxide ( $CO_2$ ); and other hydro-carbons such as ethane ( $C_2H_6$ ); propane ( $C_3H_8$ ); butane ( $C_4H_{10}$ ) and heavier (+ $C_4$ ) chains of carbon and hydrogen. The water and un-reacted methanol are cooled, condensed to a liquid and re-cycled back to the fluidized-bed catalytic reactor for olefins synthesis once again. Spent catalyst from the fluidized-bed catalytic reactor is routed to the catalyst regenerator in which the accumulated coke is burned off the catalyst with the application of hot air. The coke-free regenerated catalyst for methanol to olefins synthesis again and again.

The cooled reactor effluent leaving the recycle reactor (Figure 79) is further processed to 1) remove carbon dioxide; and thereafter 2) compressed at high pressure to a liquid state for the purpose of further separation by distillation. At the start of separation process, the reactor effluent (a mixture of ethylene, propylene, methane, propane, butane and other hydrocarbons) is passed over a series of separation units, including de-ethanizer, de-methanizer and de-propanizer to remove ethane, methane-rich flue gas and propane, respectively.

The effluent leaving the de-ethanizer consists of two hydrocarbon streams: a "lighter hydrocarbon stream" and a "heavier hydrocarbon stream". The "lighter hydrocarbon stream" contains a mixture of ethylene ( $C_2H_4$ ), methane ( $CH_4$ ) and small amount of ethane ( $C_2H_6$ ) that has not been removed by the de-ethanizer. The "heavier hydrocarbon stream" contains a mixture of propylene ( $C_3H_6$ ), propane ( $C_3H_8$ ), butane ( $C_4H_{10}$ ) and other heavier hydrocarbons. These two streams will be processed separately to obtain the MTO target products of ethylene and propylene.

The "lighter hydrocarbon stream" is fed into the de-methanizer. The demethanizer is used to remove methane which is used as a fuel source to power the plant operation. After the methane is removed, the resulting effluent of ethylene ( $C_2H_4$ ) and ethane ( $C_2H_6$ ) is fed into a C2 splitter to separate the two products.

The "heavier hydrocarbon stream" is fed to the de-propanizer. The depropanizer is used to remove propane before further processing. Two hydrocarbon streams are emitted from de-propanizer. The first stream, being a mixture of propylene ( $C_3H_6$ ) and propane ( $C_3H_8$ ) is 1) fed into an oxygen removal unit, and thereafter 2) fed into a C3 splitter to separate propylene and propane. The second stream, being a mixture of butane and other heavier hydrocarbons, is sent to the de-butanizer for separation of butane ( $C_4H_{10}$ ) and other heavier hydrocarbons.

It is worth noting that the configuration of the MTO equipment / facility is not always uniform across production facilities. We have thus summarized the process and equipment (Figure 79) as a reference point only.

**De-Ethanizer:** A de-ethanizer is used to remove ethane. The reaction effluent leaving de-ethanizer consists of two hydrocarbon streams, with a lighter stream containing ethylene (and other light hydrocarbons) and a heavier stream containing propylene (and other heavy hydrocarbons).

**De-methanizer:** A de-methanizer is similar to the de-ethanizer, except that it is used to remove methane.

**De-propanizer:** A de-propanize is also similar to de-ethanizer, except that it is used to remove propane.

**De-butanizer:** A de-butanizer is used to separate butane and other heavier hydrocarbons.

 $C_2$  /  $C_3$  splitters:  $C_2$  /  $C_3$  splitters are used to separate ethylene / ethane and propylene / propane by distillation. Distillation is achieved by utilizing the different of boiling points between different substances.

Both crude methanol (17-20% water by mass) and pure methanol (0.1% water by mass) can be used as feedstock to produce olefins (MTO). The CTO producer can eliminate costs by using crude methanol as feedstock for olefins production and do away with the need to capex a methanol refinery. However the CTM producer has the option to sell to markets that require the premium quality / price of pure methanol (fuel blending; fuel cells as hydrogen carrier and waste water treatment) and / or to markets that can use the lower quality / lower cost crude methanol (feedstock for MTO, DME, plasticizers and emulsifiers). We suspect that the CTO producer's ability to use crude methanol says a lot about limited crossover of stand-alone CTM into stand alone MTO facilities. Economics are favorable on CTO relative to non-dedicated CTM into a dedicated MTO facility.



# MTO technology(s) found in China

World-wide there are four methanol-to-olefin technologies, of which all four are being used currently in China:

- 1. D-MTO / D-MTO-II,
- 2. S-MTO,
- 3. MTO by UOP; and
- 4. MTP by Lurgi

There is a 5th MTO technology called "F-MTP" which was developed by Tsinghua University in conjunction with China National Chemical Engineering Group beginning in 1999. However, according to current research notes, "F-MTP" technology has yet to be commercially tested.

"D-MTO / D-MTO-II" and "S-MTO" are technologies developed in China by Chinese companies / institutes. The D-MTO / D-MTO-II technology has the largest market share in China (64% and 70% in terms of number of units and capacity, respectively). The "Market share" participations noted below include methanol-to-olefin projects both in operation and in the planning stage. We discuss the characteristics and reaction mechanisms associated with each of these different technologies in the following sections.

Technology	No. of units	Olefins capacity (mln ton per year)	Market share	Origin		
D-MTO / D-MTO-II	18	10.0	69%	Domestic		
S-МТО	4	2.0	14%	Domestic		
<b>UOP MTO</b>	3	1.2	8%	Overseas		
Lurgi MTP	2	0.9	7%	Overseas		
Others	1	0.2	1%			
	28	14.4	100%			
Note: The units include projects in operation and at planning stage.						

## Figure 80: Market share in China – Methanol-to-olefin technology

Source: Dalian Institute of chemical Physics, Deutsche Bank

2 July 2014 Chemicals China's Coal to Olefins Industry

### D-MTO / D-MTO-II

D-MTO is a 1st generation methanol-to-olefins technology which was discovered (1980s) by the Dalian Institute of Chemical Physics (DICP) and later developed, tested and financed with help from Sinopec Group and the Shaanxi Coal and Chemical Industry Group. The technology was first tested on a commercial scale (Shenhua Baotou) in June 2010. The 2nd generation technology (D-MTO-II) is an upgraded version of D-MTO and has the capacity to recycle C₄ and higher carbon chains back through the reactor (Figure 82). The D-MTO process required 2.97 tons of methanol to produce 1 ton of olefins; the D-MTO-II process requires 2.67 tons of methanol to produce 1 ton of olefins.

The Shenhua Baotou CTO project uses coal to produce methanol and methanol to produce olefins via D-MTO technology. Butene / butylene, propane, ethane, heavier hydrocarbons ( $+C_4$ ) and sulfur are by-products of the D-MTO / MTO process. The key feature of D-MTO technology is the ability to separate target products (ethylene/ propylene) from a mixture of hydrocarbons that may include some unwanted heavier hydrocarbons.

The Shenhua Baotou 600,000 ton/year project is the world's first commercial CTO project and the world's first CTO project using D-MTO technology. As per the Chinese Social Sciences Net (CSSN.cn) the 2012 utilization rate for Shenhua Baotau (CTO) was 90%. In Dec 2013, the Shenhua Baotou project was transferred from Shenhua Group (Parent) to China Shenhua Energy Company Ltd (1088 HK; Buy). On 25-April, China Shenhua Energy Company reported 1014 olefin sales (polyethylene and polypropylene) of 170k tons which would equate to an annualized utilization rate on the Baotou CTO facility of approximately 113%.

We note that the Shenhua Ningxia MTO project (0.5 mln tpa propylene / polypropylene) remains under the Shenhua Group (Parent) company rather than under China Shenhua Energy Company Ltd (1088 HK; Buy). We also assume that China Shenhua Energy (1088 HK) in its 1Q14 results announcement reported PE and PP production (170k tons) only for its Baotou CTO project rather than for both its Baotou project and its Parent's MTO Ningxia project.

Figure 81 shows the technology providers for the Shenhua Baotou CTO project from start to finish: 1) GE technology (GE US; Buy) is used for the coal to syngas conversion; 2) Johnson Matthey Davy (JMAT LN; Buy) technology is used for the syngas to methanol conversion; 3) DICP/ SYN / LPEC technology is used for the methanol to olefins conversion (LEPC is Luoyang Petrochemical Engineering Corporation a subsidiary of the Sinopec Group – Parent company); 4) Lummus technology is used to separate the ethylene and propylene streams; while 5) Univation technology is used to convert ethylene to polyethylene; and 6) Dow Chemical (DOW UN; Hold) technology is used to convert propylene.





**Reaction condition and feedstock consumption**: The reaction under D-MTO/D-MTO-II technology is an acid catalyzed reaction with a 100% methanol conversion rate. This reaction occurs at high temperature and medium pressure (400-500°C and 0.1-0.3MPa) and is exothermic (gives off heat).

**Equipment:** The D-MTO/ D-MTO-II system(s) consist of a fluidized catalytic reactor, a catalyst regenerator, a unit for separating ethylene ( $C_2$ ) / propylene ( $C_3$ ) and heavier hydrocarbons (+ $C_4$ ), and peripheral equipment (e.g. utilities, air compression units). SYN Energy Technology Company Ltd, a subsidiary of Dalian Institute of Chemical Physics (DICP) and the holder of the D-MTO/ D-MTO-II intellectual property rights, confirmed to us that all D-MTO/ D-MTO-II equipment can be fully manufactured in China with the exception of certain metering equipment.

*Catalyst:* D-MTO/ D-MTO-II use the same dedicated catalyst for the reaction. In addition, the one catalyst can be used for two separate catalyst-reactions: 1) converting methanol to ethylene and propylene; and 2) converting heavier olefins  $(+C_4)$  to ethylene and propylene. The developer of the catalyst (DICP) estimates that the catalyst consumption per ton methanol is less than 0.25 kg.

### Figure 82: Methanol to Olefin technology (DMTO vs DMTO-II)



According to the chief scientist of the D-MTO project, the "D" in D-MTO stands for two things 1) the city of Dalian in Liaoning province, where the project was developed by DICP, and / or 2) "D" as an abbreviation for DME or "Di-Methol Ether" ( $CH_3OCH_3$ ). In essence, both methanol and DME can be used as feedstock to produce olefins in the D-MTO and / or D-MTO-II process.

In China, DME is used as 1) a substitute and / or filler for LPG; 2) a blender into the gasoline and / or diesel pool; and 3) an aerosol propellant. DME is produced by the de-hydration (removal of water) of methanol.

The core D-MTO process technology is the SAPO-34 catalyst (See section below "Catalyst for MTO – SAPO 34")

### S-MTO

Sinopec has also developed its own methanol-to-olefins process called "S-MTO" (Figure 83) or "Sinopec-MTO". In 2007, Sinopec built a pilot project at Yanshan Petrochemical Co. for testing the S-MTO technology. Sinopec built the first large-scale (200k tpa) S-MTO plant in Henan province (central China) which was put into commercial operation in October 2011. This S-MTO plant is under Sinopec Zhongyuan Petrochemical Corp. Ltd. which is 93.5% owned by Sinopec Corp (386.HK) and 6.49% by the government of Henan Province.

In December 2013, the Zhong Tian He Chuang Energy Corporation (a JV owned 38.75%, 38.75%, 12.5% and 10% by Sinopec Corp (386 HK), China Coal Energy Company (1898 HK; Sell), Shanghai Shenergy (600642 CH) and Inner Mongolia Manshi Coal Group), contracted Sinopec Engineering Group (2386 HK; Buy) to build a large CTO facility in Inner Mongolia using S-MTO technology. The capacity of this project has been declared at 3.6 million tpa of olefin with a provisional handover date by October 2015.

The NDRC has granted Sinopec Group "preliminary approval" to build two 600K tpa MTO plants using S-MTO technology. The two facilities will be built in Guizhou and Henan. Sinopec Group (parent company) has yet to provide a work schedule and / or intended completion date for the two projects. Sinopec Group did not comment as to whether these assets would be passed to Sinopec Corp (386 HK) at any time in the future.

S-MTO technology uses "SAPO-34" as a catalyst which is able to alter the product mix (yield) of ethylene vs. propylene. The ratio of ethylene and propylene can be adjusted from 0.6 to 1.3. A product ratio of ethylene and propylene of 1.3 suggests a product yield of ethylene to propylene of 57% and 43% (57 / 43 = 1.3) respectively.

If Olefin Catalytic Cracking ("OCC") is used simultaneously with S-MTO, the overall yield of ethylene and propylene can be increased from 81% to 85-87% (Figure 83). OCC is a process to break down the heavier olefins into lighter olefins (ethylene and propylene) with the use of catalyst. The by-products of OCC include hydrogen, carbon monoxide and carbon dioxide.



(There is limited information on S-MTO technology as developed by Sinopec. Nothing in terms of reaction condition, basic process flow, performance, and / or equipment configuration has been shared with public markets.)

## Methanol to Olefins ("MTO") by UOP

The methanol-to-olefins by UOP process takes place through a complex network of chemical reactions. "Selectivity" is a measure of the amount of one product produced relative to others when the possibility to form multiple products exists: ethylene & propylene in our case. Selectivity depends on temperature.



Methanol is pre-heated to gaseous phase and introduced into the MTO reactor for olefins synthesis (Figure 84). The reactor operates at vapor phase at temperature of 340 – 540°C and pressure of 0.1- 0.3 MPa. Olefins synthesis is speed up by catalyst SAPO-34, which is circulating inside the reactor.

During the olefins synthesis, coke is accumulated on catalyst's surface and requires removal to restore the catalyst's ability to function properly. This is achieved by routing the catalyst into a catalyst regenerating system in which the coke is removed by combustion with air. After the coke has been removed, the catalyst will be circulated back to MTO reactor.

The reactor effluent (i.e. - ethylene, propylene, heavier olefins and water) is then cooled. Water is separated from the product gas stream. The effluent is then fed into a light olefin recovery unit which separates ethylene ( $C_2$ ) & propylene ( $C_3$ ) while the heavier olefins  $C_4$  to  $C_6$  (olefins with 4 to 6 carbon atoms at each olefins molecule) are sent to be cracked into either  $C_3$ (propylene) or  $C_4$  (butadiene) olefins. The propylene is recycled for light olefin recovery while the  $C_4$  is used as fuel for the MTO process or other processes.

### Methanol-to-propylene ("MTP") by Lurgi:

MTP by Lurgi is a technology that converts methanol to propylene under relatively mild operating conditions (430-450°C and 0.35MPa).

### Figure 85: Process flow – Methanol to propylene ("MTP")



Methanol is first pre-heated to  $260^{\circ}$ C before fed into the DME reactor (Figure 85). Under the presence of catalyst, 75% of the methanol feed is converted to DME and water. The remaining 25% of reactor effluent is un-reacted methanol. The reaction mixture is then heated to  $470^{\circ}$ C and fed into the first MTP reactor with steam (0.3 – 0.8 kg steam per kg reaction mixture). The first MTP reactor converts more than 99% of the methanol / DME mix into propylene. The reaction mixture is then fed into a second and third MTP reactor to further increase the propylene yield.

The gaseous reaction mixture (rich in propylene) leaving the third MTP reactor is cooled to separate propylene (product), organic liquids and water. Propylene is further compressed to remove trace amount of impurities (carbon dioxide, water and DME). Organic liquids will be refined to olefins, gasoline and fuel gas. Any olefins that are heavier than propylene will be recycled to MTP reactors to increase the propylene yield.

# The Catalyst for methanol-to-olefins (SAPO-34)

The SAPO-34 catalyst was developed by the Union Carbide Corporation (acquired by Dow Chemical 2001) in 1982 and consists of silicon, aluminum, phosphate and oxygen. SAPO-34 is used to synthesize olefins from methanol.

## Physical outlook and basic working principle

SAPO-34 is an eight-ring crystalline substance with numerous extremely small holes / pores of 0.38nm (Figure 86). 1 nm equals to 1/1,000,000,000 of 1 meter. SAPO-34 catalyst works by using small pore molecular sieves to alter the structure of the methanol feedstock and convert it to olefin molecules.

### Preparation method

SAPO-34 is synthesized with the assistance by Tri-ethylamine. Tri-ethylamine is commonly used in the process of organic synthesis (i.e. to assist the production of carbon-containing molecules). SAPO-34 catalyst is prepared by the conversion of a dry gel containing Aluminum Oxide, Phosphate Oxide, Tri-

Figure 86: Structure of SAPO-34



Source: Freepatent Online; Deutsche Bank

2 July 2014 Chemicals China's Coal to Olefins Industry

ethylamine and water in a ratio of 1.0 : 1.0 : 0.6 : 3.0 : 50. The gel is then transferred to a stainless steel autoclave for further processing. "Autoclave" is a device used to sterilize equipment / substance (i.e. to kill bacteria. viruses, fungi and spores). The SAPO-34 catalyst is obtained after crystallization at 200°C and calcinations of the gel at 550°C for 4 hours. Calcination is a thermal treatment process carried out in the presence of air / oxygen for decomposition or removal volatile substances.

#### Modification on "SAPO-34" to improve its catalytic performance

In order to increase the product selectivity and avoid side reactions, metal such as Nickel, Magnesium, Calcium and Strontium are added to the pores / molecular sieve to adjust the size of pores and increase the catalyst's mechanical strength.

## **Financials**

We have conducted a cost analysis for coal-to-olefins (Figure 87 to Figure 93). We have considered two cases: Case 1 is a plant located in Inner Mongolia with coal feedstock from its self-owned coal mine; and Case 2 is a "MTO" plant located at Eastern China (Jiangsu province) that uses imported pure methanol (as opposed to crude methanol) for olefins production.

We would see that olefin from Inner Mongolia has a cost advantage of around US905 / ton compared with Case 2 (MTO at Eastern China). But it is worth noting that the cost of coal-to-olefins in Inner Mongolia depends heavily on low cost coal feedstock. On the other hand, olefin cost in Case 2 depends heavily on imported methanol, which is probably gas-based methanol from Middle East. We would point out that the cost comparison is mainly a competition of feedstock which accounts for 25 – 30% of the total production cost.

### Figure 87: Key Assumptions for Olefins cost analysis

#### Key Assumptions for Olefins cost analysis:

- 1. Assumes 3 tons of methanol used to produce 1 ton of olefins (ethylene and / or propylene)
- 2. Assumes that 1.4 tons of bituminous coal is used to produce 1 ton of methanol
- 3. Assumes DMTO-II technology is used in Case 1 and Case 2
- 4. Assumes that the coal cost from self-owned mines is 20% less than coal purchased from third parties
- 5. Assumes 3.47 tons of naphtha used to produce 1 ton of olefins (ethylene and / or propylene)
- 6. Assumes the olefins production capacity of CTO and MTO to be 600k TPA & Naphtha-to-olefins to be 4m TPA
- 7. Assumes the total investment of CTO and MTO projects to be 15.0 billion Rmb and 9.0 billion Rmb (60% of CTO); and Naphtha-to-olefins to be 19.2 billion Rmb
- 8. Assumes the useful life of plant & machinery to be 15 years and the depreciation expenses spread evenly over the olefins products

#### 9. Assumes the target market is in Eastern China, in close proximity to the olefins plant in Case 2 and Case 3

Source: Deutsche Bank

## Figure 88: Sensitivity test - Coal and Methanol cost on Olefins

Case 1 : Inne	er Mongolia / self-ow	ned coal mines		Case 2 : Ea	Case 2 : Eastern China / importe
Change in coal price	Methanol cost (USD / ton)	Compare with current methanol cost	m	Change in ethanol price	Change in         Methanol cost           ethanol price         (USD / ton)
	626	-2.2%		-10%	-10% 1421
-5%	633	-1.1%	-5%	, 0	6 1483
0%	640	0.0%	0%		1545
+5%	647	1.1%	+5%		1607
+10%	654	2.2%	+10%		1669
+15%	662	3.4%	+15%		1731
+20%	669	4.5%	+20%		1793
+30%	683	<b>6.7%</b>	+30%		1917
+50%	712	11.2%	+50%		2164

Source: Deutsche Bank

### Figure 89: Sensitivity test - Coal and Naphtha cost on Olefins

Case 1 : Inne	Case 1 : Inner Mongolia / self-owned coal mines		Case	3 : Eastern China / na	aphtha
Change in coal price	Methanol cost (USD / ton)	Compare with current methanol cost	Change in methanol price	Methanol cost (USD / ton)	Compare with current methanol cost
-10%	626	-2.2%	-10%	845	-28.6%
-5%	633	-1.1%	-5%	1015	-14.3%
0%	640	0.0%	0%	1185	0.0%
+5%	647	1.1%	+5%	1354	14.3%
+10%	654	2.2%	+10%	1524	28.6%
+15%	662	3.4%	+15%	1694	43.0%
+20%	669	4.5%	+20%	1863	57.3%
+30%	683	6.7%	+30%	2203	85.9%
+50%	712	11.2%	+50%	2881	143.2%

Source: Deutsche Bank

## Figure 90: CTO / MTO cost models – Inner Mongolia "self-owned coal mines" vs. E. China "imported methanol"

	Case 1 Inner Mongolia	Case 2 Eastern China	
	Self-owned coal mines	Imported methanol	
Feedstock cost			
Coal used for feedstock			
Coal price (ex-plant)	207	0	RMB/ton coal
Coal price (ex-plant)	34	0	USD/ton coal
Coal consumption per ton methanol	1.40	0.00	ton coal/ton methanol
Coal feedstock cost per ton methanol	290	0	RMB/ton methanol
	48	0	USD/ton methanol
Total coal consumption per ton methanol	1.40	0.00	ton coal/ton methanol
Total coal cost per ton methanol	290		RMB/ton methanol
·	48		USD/ton methanol
Methanol consumption per ton olefins	3.00	3.00	ton methanol/ton olefins
Methanol purchase cost		2,500	RMB/ton methanol
		413	USD/ton methanol
Total feedstock cost per ton olefins	869	7,500	RMB/ton olefins
	144	1,240	USD/ton olefins
Electricity			
Electricity (from coal to methanol)			
Usage per ton methanol	500	0	Kwh/ton methanol
Electricity tariff	0.35	0	RMB/Kwh
Electricity cost per ton methanol	175	0	RMB/ton methanol
Electricity cost per ton olefins	525	0	RMB/ton olefins
Electricity (from methanol to olefins)			
Usage per ton olefins	450	650	Kwh/ton olefins
Electricity tariff	0.35	0.65	RMB/Kwh
Electricity cost per ton olefins	158	421	RMB/ton olefins
Total electricity cost per ton olefins	683	421	RMB/ton olefins
Depreciation and Labor			
Depreciation	500	300	RMB/ton olefins
Labor and management overhead	100	50	RMB/ton olefins

Source: www.sxcoal.com, NDRC, CEIC, Deutsche Bank

Figure 91: CTO/ MTO cost models - Inner Mongolia "self-owned coal mines" vs. E. China "imported methanol" (Con't)

	Case 1 Inner Mongolia	Case 2 Eastern China	
	Self-owned coal mines	Imported methanol	
Water cost			
Water (from coal to methanol)			
Water price	3.50	0.00	RMB/ton water
Water usage	15	0	ton water/ton methanol
Water cost per ton methanol	53	0	RMB/ton methanol
Water cost per ton olefins	158	0	RMB/ton olefins
Water (from methanol to olefins)			
Water price	3.50	2.60	RMB/ton water
Water usage	15	15	ton water/ton olefins
Water cost per ton olefins	53	39	RMB/ton olefins
Total water cost per ton olefins	210	39	RMB/ton olefins
Effluent treatment cost			
Effluent treatment (from coal to methanol)			
Treatment price	0.95	0.00	RMB/ton effluent
Treatment volume	30	0	ton effluent/ton methanol
Treatment cost per ton methanol	29	0	RMB/ton methanol
Treatment cost per ton olefins	86	0	RMB/ton olefins
Effluent treatment (from methanol to olefi	ns <u>)</u>		
Treatment price	0.95	1.30	RMB/ton effluent
Treatment volume	30	30	ton effluent/ton methanol
Treatment cost per ton olefins	29	39	RMB/ton olefins
Total effluent treatment cost per ton olefin	s 114	39	RMB/ton olefins
Others			
R&M and insurance	80	96	RMB/ton olefins
Other production supplies	750	900	RMB/ton olefins
Transportation cost for olefins product			
Distance	1,889	0	km
Transportation cost	0.30	0	RMB/ton km
Transportation cost per ton olefins	567	0	RMB/ton olefins
Total production cost per ton olefins	3,873	9,345	RMB/ton olefins
	640	1,545	USD/ton olefins

Source: www.sxcoal.com, NDRC, CEIC, Deutsche Bank

## Figure 92: CTO / Naphtha-to-olefins cost models – Inner Mongolia "self-owned coal mines" vs. E. China "naphtha"

Interf Wongola Soft-owned coal minus         Calk the Apphtha           FeedStock cost         Coal price (ex-plant) Coal price (ex-plant)         207         0         RMB/ton coal USD/ton coal           Coal price (ex-plant) Coal price (ex-plant)         34         0         USD/ton coal           Coal price (ex-plant)         34         0         USD/ton coal           Coal price (ex-plant)         34         0         USD/ton methanol           Coal enced for feedStock cost per ton methanol         290         0         RMB/ton methanol           Appthta aged for feedStock         Naphtha price (ex-plant)         0         666         RMB/ton nethanol           Naphtha price (ex-plant)         0         10         USD/ton methanol         USD/ton insphtha           Naphtha price (ex-plant)         0         10         USD/ton insphtha         USD/ton insphtha           Naphtha price (ex-plant)         0         10         USD/ton insphtha         USD/ton insphtha           Naphtha price (ex-plant)         0         144         3,292         USD/ton insphtha           Naphta costs         0         2,287         RMB/ton olefins           Propylene         (0.581 tons / ton olefins)         0         2,289         RMB/ton olefins           Fydrogen         (		Case 1	Case 3				
Feedstock cost         Coal used for feedstock           Coal price (ex-plant)         207         0         RNB/ton coal           Coal price (ex-plant)         34         0         USD/ton coal           Coal consumption per ton methanol         1.40         0         USD/ton coal           Coal freedstock cost per ton methanol         290         0         RNB/ton methanol           Agentia price (ex-plant)         0         110         USD/ton methanol           Naphtha used for feedstock         Naphtha price (ex-plant)         0         110         USD/ton methanol           Naphtha price (ex-plant)         0         110         USD/ton methanol         USD/ton methanol           Naphtha price (ex-plant)         0         30.8         bbl inaphtha         USD/ton inaphtha           Naphtha price (ex-plant)         0         4.519         RNB/ton olefins         USD/ton inaphtha           Total feedstock cost per ton olefins         669         20.529         RNB/ton olefins         USD/ton olefins           Propylene         0         4.519         RNB/ton olefins         USD/ton olefins           Propylene         0.565         RNB/ton olefins         USD/ton olefins         USD/ton olefins           Propylene         0.2431 tons / ton olefins)		Self-owned coal mines	Eastern China Naphtha				
Coal used for feedstock         207         0         RMB/ton coal           Coal price (xe-plant)         34         0         USD/ton coal           Coal price (xe-plant)         34         0         USD/ton coal           Coal price (xe-plant)         34         0         USD/ton coal           Coal consumption per ton methanol         1.40         0         ton coal/ton methanol           Methanol consumption per ton olefins         3.00         ton methanol/ton olefins         USD/ton methanol           Naphtha price (ex-plant)         0         666         RMB/ton olefins         0           Naphtha price (ex-plant)         0         110         USD/ton nethanol           Naphtha consumption per ton olefins         0         3.08         bbl naphtha           Naphtha consumption per ton olefins         0         3.08         USD/ton olefins           Credit: by-products sales         144         3.333         USD/ton olefins           Propylene         (0.531 tons / ton olefins)         0         4.640         RMB/ton olefins           Progues         (0.803 tons / ton olefins)         0         2.286         RMB/ton olefins           Pyraysis fuel oil         (0.168 tons / ton olefins)         0         629         RMB/ton olefins <th>Feedstock cost</th> <th></th> <th>napitita</th> <th></th>	Feedstock cost		napitita				
Coal price (ex-plant)       207       0       RWERTon coal         Coal price (ex-plant)       34       0       USD/ton coal         Coal oncomption per ton methanol       140       0       ton coal/loon methanol         Coal oncomption per ton methanol       290       0       RME/ton methanol         Methanol consumption per ton olefins       3.00       ton coal/loon methanol       46       0       USD/ton methanol         Naphtha used for feedstock       Naphtha price (ex-plant)       0       666       RWE/tob naphtha         Naphtha price (ex-plant)       0       10       USD/ton olefins       0       10       USD/ton olefins         Total feedstock cost per ton olefins       0       3.03       bit naphtha       0       10       USD/ton olefins         Credit: by-products sales       144       3.383       USD/ton olefins       0       2.287       RME/ton olefins         Propylene       (0.581 tons / ton olefins)       0       4.640       RME/ton olefins       0       4.640       RME/ton olefins         Fuel       (25.543 tons / ton olefins)       0       6.69       RME/ton olefins       0       6.69       RME/ton olefins         Usage per ton methanol       500       0       Kwh/ton olefins       <	Coal used for feedstock						
Coal price (ex-plant)         34         0         USD/ton coal           Coal consumption per ton methanol         1.40         0         ton coal/ton methanol           Coal consumption per ton olefins         3.00         RMB/ton methanol         USD/ton coal           Naphtha loc (ex-plant)         0         666         RMB/ton methanol         USD/ton methanol           Naphtha price (ex-plant)         0         110         USD/ton loefins         USD/ton loefins           Naphtha price (ex-plant)         0         110         USD/ton loefins         USD/ton loefins           Total feedstock cost per ton olefins         0         3.8         bol naphtha         loefins           Credit by-products sales	Coal price (ex-plant)	207	0	RMB/ton coal			
Coal consumption per ton methanol         1.40         0         ton coal/ton methanol           Coal feedstock cost per ton methanol         290         0         RMB/ton methanol           Methanol consumption per ton olefins         3.00         ton methanol/USD/ton methanol           Naphtha used for feedstock         0         666         RMB/ton methanol           Naphtha used for feedstock         0         666         RMB/ton methanol           Naphtha used for feedstock         0         30.8         bbl naphtha           Naphtha consumption per ton olefins         0         30.8         bbl naphtha           Total feedstock cost per ton olefins         869         20,529         RMB/ton olefins           Total feedstock cost per ton olefins         144         3,393         USD/ton olefins           Crodit: by-products sales         144         3,393         USD/ton olefins           Propylene         (0.581 tons / ton olefins)         0         4,519         RMB/ton olefins           Pygas         (0.803 tons / ton olefins)         0         2,287         RMB/ton olefins           Fuel         (25.543 tons / ton olefins)         0         2,269         RMB/ton olefins           Usage per ton methanol         500         0         Kwhoton olefins <td>Coal price (ex-plant)</td> <td>34</td> <td>0</td> <td>USD/ton coal</td>	Coal price (ex-plant)	34	0	USD/ton coal			
Coal feedstock cost per ton methanol       290       0       RMB/ton methanol         Methanol consumption per ton olefins       3.00       ton methanol/ton olefins         Naphtha used for feedstock       Naphtha price (ex-plant)       0       666       RMB/ton olefins         Naphtha price (ex-plant)       0       100       USD/ton methanol olefins         Naphtha price (ex-plant)       0       3.8       bbl naphtha/ton olefins         Total feedstock cost per ton olefins       869       20,529       RMB/ton olefins         Credit: by-products sales       0       4,519       RMB/ton olefins         Propylene       (0.581 tons / ton olefins)       0       4,519       RMB/ton olefins         Crude C4s       (0.381 tons / ton olefins)       0       2,287       RMB/ton olefins         Pygas       (0.803 tons / ton olefins)       0       4,840       RMB/ton olefins         Pygas       (0.480 tons / ton olefins)       0       2,269       RMB/ton olefins         Pyrolysis fuel oil       (0.168 tons / ton olefins)       0       629       RMB/ton olefins         Electricity       0       14,913       RMB/ton olefins       0       RMB/ton olefins         Usage per ton methanol       500       0       Kwh/ton olefins	Coal consumption per ton methanol	1.40	0	ton coal/ton methanol			
48         0         USD/ton methanol           Methanol consumption per ton olefins         3.00         ton methanol/ton olefins           Naphtha used for feedstock         Naphtha price (ex-plant)         0         6666         RMB/bbl naphtha           Naphtha price (ex-plant)         0         110         USD/bbl naphtha           Naphtha consumption per ton olefins         0         30.8         bbl naphtha/ton olefins           Total feedstock cost per ton olefins         669         20,529         RMB/ton olefins           Credit: by-products sales          USD/ton olefins         USD/ton olefins           Credit: by-products sales         0         4,640         RMB/ton olefins           Propylene         (0.581 tons / ton olefins)         0         4,640         RMB/ton olefins           Pyraysis fue oil (0.168 tons / ton olefins)         0         2,287         RMB/ton olefins           Pyrolysis fue oil (0.168 tons / ton olefins)         0         629         RMB/ton olefins           Pyrolysis fue oil (0.168 tons / ton olefins)         0         629         RMB/ton olefins           Electricity         0         14,913         RMB/ton olefins           Electricity (from cell methanol         175         0         RMB/ton olefins	Coal feedstock cost per ton methanol	290	0	RMB/ton methanol			
Methanol consumption per ton olefins     3.00     ton methanol/ton olefins       Naphtha price (ex-plant)     0     666     RMB/hbl naphtha       Naphtha price (ex-plant)     0     110     USD/bbl naphtha       Naphtha price (ex-plant)     0     30.8     bbl naphtha       Naphtha price (ex-plant)     0     30.8     bbl naphtha       Naphtha consumption per ton olefins     0     30.8     bbl naphtha       Total feedstock cost per ton olefins     869     20.529     RMB/ton olefins       Total feedstock cost per ton olefins     144     3.930     USD/ton olefins       Propylene     (0.581 tons / ton olefins)     0     4.519     RMB/ton olefins       Pygas     (0.803 tons / ton olefins)     0     2.287     RMB/ton olefins       Pygas     (0.803 tons / ton olefins)     0     2.269     RMB/ton olefins       Fuel     (25.543 tons / ton olefins)     0     2.269     RMB/ton olefins       Pyotysis fuel oil     (0.168 tons / ton olefins)     0     14,913     RMB/ton olefins       Electricity     0     14,913     RMB/ton olefins     14       Usage per ton methanol     500     0     Kwh/ton olefins       Usage per ton olefins     450     0     RMB/ton olefins       Electricity (from colefins) <td></td> <td>48</td> <td>0</td> <td>USD/ton methanol</td>		48	0	USD/ton methanol			
Naphtha price (ex.plant)         0         666         RMB/bbl naphtha           Naphtha price (ex.plant)         0         110         USD/bbl naphtha           Naphtha consumption per ton olefins         0         30.8         bbl naphtha           Total feedstock cost per ton olefins         0         30.8         bbl naphtha           Total feedstock cost per ton olefins         144         3.993         USD/ton olefins           Propylene         (0.581 tons / ton olefins)         0         2,287         RMB/ton olefins           Credit: by-products sales         0         2,287         RMB/ton olefins         9           Pygas         (0.030 tons / ton olefins)         0         4,540         RMB/ton olefins           Pygas         (0.030 tons / ton olefins)         0         2,289         RMB/ton olefins           Pyropylene         (10.616 tons / ton olefins)         0         2,259         RMB/ton olefins           Pyropyles fuel oil (0.168 tons / ton olefins)         0         14,913         RMB/ton olefins           Electricity tariff         0.355         0         RMB/ton olefins           Usage per ton methanol         175         0         RMB/ton olefins           Electricity (from cab fins)         0.355         0.00	Methanol consumption per ton olefins	3.00		ton methanol/ton olefins			
Naphtha price (ex-plant)         0         666         RMB/bbl naphtha           Naphtha price (ex-plant)         0         110         USD/bbl naphtha           Naphtha consumption per ton olefins         0         30.8         bbl naphtha/ton olefins           Total feedstock cost per ton olefins         869         20,529         RMB/ton olefins           Credit: by-products sales         144         3,393         USD/ton olefins           Propylene         (0.581 tons / ton olefins)         0         4,519         RMB/ton olefins           Crude C4s         (0.381 tons / ton olefins)         0         4,640         RMB/ton olefins           Pygas         (0.803 tons / ton olefins)         0         2,287         RMB/ton olefins           Fuel         (25.543 tons / ton olefins)         0         2,269         RMB/ton olefins           Fuel         (25.543 tons / ton olefins)         0         2,269         RMB/ton olefins           Fuel         (25.543 tons / ton olefins)         0         622         RMB/ton olefins           Electricity         0         14,913         RMB/ton olefins         8           Usage per ton methanol         500         0         Kwh/ton methanol           Electricity tariff         0.35         0.00<	Naphtha used for feedstock						
Naphtha price (ex-plant)       0       110       USD/bbl naphtha         Naphtha consumption per ton olefins       0       30.8       bbl naphtha/ton olefins         Total feedstock cost per ton olefins       869       20,529       RMB/ton olefins         Credit: by-products sales       144       3,393       USD/ton olefins         Propylene       (0.581 tons / ton olefins)       0       4,519       RMB/ton olefins         Crude C4s       (0.303 tons / ton olefins)       0       2,287       RMB/ton olefins         Pygas       (0.048 tons / ton olefins)       0       4,640       RMB/ton olefins         Fuel       (25.543 tons / ton olefins)       0       2,269       RMB/ton olefins         Pyrolysis fuel oil       (0.168 tons / ton olefins)       0       629       RMB/ton olefins         Pyrolysis fuel oil       (0.168 tons / ton olefins)       0       14,913       RMB/ton olefins         Electricity       175       0       RMB/ton olefins       0       14,913       RMB/ton olefins         Electricity tariff       0.35       0       RMB/ton olefins       0       14,913       RMB/ton olefins         Electricity tariff       0.35       0       RMB/ton olefins       0       RMB/ton olefins <t< td=""><td>Naphtha price (ex-plant)</td><td>0</td><td>666</td><td>RMB/bbl naphtha</td></t<>	Naphtha price (ex-plant)	0	666	RMB/bbl naphtha			
Naphtha consumption per ton olefins     0     30.8     bbl naphtha/ton olefins       Total feedstock cost per ton olefins     869     20,529     RMB/ton olefins       144     3,393     USD/ton olefins       Propylene     (0.581 tons / ton olefins)     0     4,519     RMB/ton olefins       Propylene     (0.581 tons / ton olefins)     0     2,287     RMB/ton olefins       Propylene     (0.038 tons / ton olefins)     0     4,640     RMB/ton olefins       Pygas     (0.038 tons / ton olefins)     0     2,287     RMB/ton olefins       Pygas     (0.048 tons / ton olefins)     0     2,269     RMB/ton olefins       Pyrolysis fuel oil     (0.168 tons / ton olefins)     0     2,269     RMB/ton olefins       Pyrolysis fuel oil     (0.168 tons / ton olefins)     0     14,913     RMB/ton olefins       Electricity     0     14,913     RMB/ton olefins     160       Usage per ton methanol     500     0     Kwh/ton methanol       Electricity (from methanol to olefins)     0.35     0.00     RMB/ton olefins       Usage per ton olefins     450     0     RMB/ton olefins       Usage per ton olefins     0     213     Kwh/ton olefins       Electricity (from methanol to olefins)     0.35     0.00     RMB/ton ol	Naphtha price (ex-plant)	0	110	USD/bbl naphtha			
Total feedstock cost per ton olefins     869     20,529     RMB/ton olefins       Propylene     (0.581 tons / ton olefins)     0     4,519     RMB/ton olefins       Crude C4s     (0.381 tons / ton olefins)     0     2,287     RMB/ton olefins       Pygas     (0.803 tons / ton olefins)     0     4,640     RMB/ton olefins       Hydrogen     (0.048 tons / ton olefins)     0     569     RMB/ton olefins       Pyrolysis fuel oil     (0.168 tons / ton olefins)     0     2,269     RMB/ton olefins       Pyrolysis fuel oil     (0.168 tons / ton olefins)     0     2,269     RMB/ton olefins       Pyrolysis fuel oil     (0.168 tons / ton olefins)     0     629     RMB/ton olefins       Electricity     0     14,913     RMB/ton olefins       Electricity tariff     0.35     0     RMB/Kwh       Electricity tariff     0.35     0     RMB/Kwh       Electricity tariff     0.35     0.0     RMB/Kwh       Sub-total     525     0     RMB/Kwh       Sub-total     536     0     RMB/Kwh       Sub-total     0     213     Kwh/ton olefins       Electricity (from methanol to olefins)     0     138     RMB/ton olefins       Usage per ton olefins     0     213     Kwh/ton	Naphtha consumption per ton olefins	0	30.8	bbl naphtha/ton olefins			
144     3,393     USD/ton olefins       Propylene     (0.581 tons / ton olefins)     0     4,519     RMB/ton olefins       Pygas     (0.803 tons / ton olefins)     0     2,287     RMB/ton olefins       Pygas     (0.803 tons / ton olefins)     0     4,640     RMB/ton olefins       Hydrogen     (0.048 tons / ton olefins)     0     569     RMB/ton olefins       Fuel     (25.543 tons / ton olefins)     0     629     RMB/ton olefins       Pyrolysis fuel oil     (0.168 tons / ton olefins)     0     629     RMB/ton olefins       Electricity     0     14,913     RMB/ton olefins       Usage per ton methanol     500     0     Kwh/ton methanol       Electricity (from coal to methanol     175     0     RMB/ton olefins       Usage per ton methanol     525     0     RMB/ton olefins       Electricity (from methanol to olefins)     0.35     0     RMB/ton olefins       Usage per ton olefins     450     0     Kwh/ton olefins       Electricity triff     0.35     0.00     RMB/ton olefins       Usage per ton olefins     450     0     RMB/ton olefins       Electricity triff     0.35     0.00     RMB/ton olefins       Usage per ton olefins     0     138     RMB/ton	Total feedstock cost per ton olefins	869	20,529	RMB/ton olefins			
Credit: by-products sales         Propylene       (0.581 tons / ton olefins)       0       4,519       RMB/ton olefins         Pygas       (0.803 tons / ton olefins)       0       2,287       RMB/ton olefins         Pygas       (0.803 tons / ton olefins)       0       4,640       RMB/ton olefins         Hydrogen       (0.048 tons / ton olefins)       0       2,269       RMB/ton olefins         Fuel       (25.543 tons / ton olefins)       0       629       RMB/ton olefins         Pyrolysis fuel oil       (0.168 tons / ton olefins)       0       629       RMB/ton olefins         Electricity       Electricity (from coal to methanol)       0       14,913       RMB/ton olefins         Usage per ton methanol       500       0       Kwh/ton methanol         Electricity (from methanol       525       0       RMB/ton olefins         Sub-total       525       0       RMB/ton olefins         Electricity (from methanol to olefins)       0.35       0.00       RMB/ton olefins         Usage per ton olefins       450       0       Kwh/ton olefins         Electricity (from methanol to olefins)       0.35       0.00       RMB/ton olefins         Usage per ton olefins       450       0       RMB/ton olefins <td></td> <td>144</td> <td>3,393</td> <td>USD/ton olefins</td>		144	3,393	USD/ton olefins			
Propylene(0.581 tons / ton olefins)04,519RMB/ton olefinsCrude C4s(0.381 tons / ton olefins)02,287RMB/ton olefinsPygas(0.048 tons / ton olefins)04,640RMB/ton olefinsHydrogen(0.048 tons / ton olefins)0569RMB/ton olefinsFuel(25.543 tons / ton olefins)0629RMB/ton olefinsPyrolysis fuel oil(0.168 tons / ton olefins)0629RMB/ton olefinsPyrolysis fuel oil(0.168 tons / ton olefins)0629RMB/ton olefinsElectricity (from coal to methanol)Usage per ton methanolSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-totalSub-total <td <="" colspan="3" td=""><td>Credit: by-products sales</td><td></td><td></td><td></td></td>	<td>Credit: by-products sales</td> <td></td> <td></td> <td></td>			Credit: by-products sales			
Crude C4s         (0.381 tons / ton olefins)         0         2,287         RMB/ton olefins           Pygas         (0.803 tons / ton olefins)         0         4,640         RME/ton olefins           Hydrogen         (0.048 tons / ton olefins)         0         569         RMB/ton olefins           Fuel         (25.543 tons / ton olefins)         0         629         RMB/ton olefins           Pyrolysis fuel oil         (0.168 tons / ton olefins)         0         629         RMB/ton olefins           Electricity         0         14,913         RMB/ton olefins         0           Electricity         0         0         KMb/ton olefins         0           Usage per ton methanol         500         0         KM/ton methanol           Electricity crist         0.35         0         RMB/ton olefins           Usage per ton methanol         525         0         RMB/ton olefins           Electricity (from methanol to olefins)         0.35         0.00         RMB/ton olefins           Usage per ton olefins         450         0         RMB/ton olefins           Electricity (from methanol to olefins)         0         2.13         Kwh/ton olefins           Usage per ton olefins         0         2.13         Kwh/ton olefins <td>Propylene (0.581 tons / ton olefins)</td> <td>0</td> <td>4,519</td> <td>RMB/ton olefins</td>	Propylene (0.581 tons / ton olefins)	0	4,519	RMB/ton olefins			
Pygas(0.803 tons / ton olefins)04,640RMB/ton olefinsHydrogen(0.048 tons / ton olefins)0569RMB/ton olefinsFuel(25.543 tons / ton olefins)02,269RMB/ton olefinsPyrolysis fuel oil(0.168 tons / ton olefins)0629RMB/ton olefinsElectricityElectricityElectricity (from coal to methanol)Usage per ton methanol5000Kwh/ton methanolElectricity cost per ton methanol5750RMB/ton olefinsBiectricity (from methanol to olefins)Usage per ton olefinsUsage per ton olefins0213Kwh/ton olefinsElectricity (from naphtha to olefins)Usage per ton olefins0213Kwh/ton olefinsElectricity (from naphtha to olefins)Usage per ton olefins0213Kwh/ton olefinsElectricity (from naphtha to olefins)Usage per ton olefins0213	Crude C4s (0.381 tons / ton olefins)	0	2,287	RMB/ton olefins			
Hydrogen(0.048 tons / ton olefins)0569RMB/ton olefinsFuel(25.543 tons / ton olefins)02.269RMB/ton olefinsPyrolysis fuel oil(0.168 tons / ton olefins)0629RMB/ton olefinsElectricity014,913RMB/ton olefinsElectricity014,913RMB/ton olefinsElectricity (from coal to methanol)5000Kwh/ton methanolElectricity cost per ton methanol5000RMB/ton olefinsSub-total5250RMB/ton olefinsElectricity (from methanol to olefins)5250RMB/ton olefinsUsage per ton olefins4500Kwh/ton olefinsElectricity tariff0.350.00RMB/ton olefinsSub-total5250RMB/ton olefinsElectricity (from methanol to olefins)0.350.00RMB/ton olefinsUsage per ton olefins0.350.00RMB/ton olefinsElectricity tariff0.350.00RMB/ton olefinsSub-total1580RMB/ton olefinsUsage per ton olefins0213Kwh/ton olefinsUsage per ton olefins0138RMB/ton olefinsTotal electricity tariff0.000.65RMB/KwhSub-total0138RMB/ton olefinsDepreciation and Labor500320RMB/ton olefinsLabor and management overhead10050RMB/ton olefins	Pygas (0.803 tons / ton olefins)	0	4,640	RMB/ton olefins			
Fuel       (25.543 tons / ton olefins)       0       2,269       RMB/ton olefins         Pyrolysis fuel oil       (0.168 tons / ton olefins)       0       629       RMB/ton olefins         0       14,913       RMB/ton olefins         Electricity (from coal to methanol)         Usage per ton methanol       500       0       Kwh/ton methanol         Electricity tariff       0.35       0       RMB/ton olefins         Electricity cost per ton methanol       575       0       RMB/ton olefins         Sub-total       525       0       RMB/ton olefins         Electricity (from methanol to olefins)       0.35       0.00       RMB/ton olefins         Usage per ton olefins       450       0       RMB/ton olefins         Electricity (from methanol to olefins)       0.35       0.00       RMB/ton olefins         Usage per ton olefins       0.35       0.00       RMB/ton olefins         Electricity (from naphtha to olefins)       0       213       Kwh/ton olefins         Usage per ton olefins       0       0       138       RMB/ton olefins         Electricity (from aphtha to olefins)       0.00       0.65       RMB/ton olefins         Usage per ton olefins       0       138       RMB/ton	Hydrogen (0.048 tons / ton olefins)	0	569	RMB/ton olefins			
Pyrolysis fuel oil (0.168 tons / ton olefins)       0       629       RMB/ton olefins         0       14,913       RMB/ton olefins         Electricity       14,913       RMB/ton olefins         Electricity (from coal to methanol)       500       0       Kwh/ton methanol         Usage per ton methanol       500       0       Kwh/ton methanol         Electricity tariff       0.35       0       RMB/ton olefins         Electricity cost per ton methanol       175       0       RMB/ton olefins         Sub-total       525       0       RMB/ton olefins         Electricity (from methanol to olefins)       0.35       0.00       RMB/ton olefins         Usage per ton olefins       450       0       Kwh/ton olefins         Electricity tariff       0.35       0.00       RMB/ton olefins         Electricity tariff       0.35       0.00       RMB/ton olefins         Usage per ton olefins       0       213       Kwh/ton olefins         Electricity tiff       0.00       0.65       RMB/ton olefins         Electricity tariff       0.00       138       RMB/ton olefins         Sub-total       0       138       RMB/ton olefins         Total electricity cost per ton olefins       68	Fuel (25.543 tons / ton olefins)	0	2,269	RMB/ton olefins			
0     14,913     RMB/ton olefins       Electricity     file     500     0     Kwh/ton methanol       Usage per ton methanol     500     0     Kwh/ton methanol       Electricity tariff     0.35     0     RMB/twh       Electricity cost per ton methanol     175     0     RMB/ton methanol       Sub-total     525     0     RMB/ton olefins       Electricity (from methanol to olefins)     525     0     RMB/ton olefins       Usage per ton olefins     450     0     Kwh/ton olefins       Electricity tariff     0.35     0.00     RMB/twh       Sub-total     158     0     RMB/twh       Usage per ton olefins     0     213     Kwh/ton olefins       Electricity (from naphtha to olefins)     0     213     Kwh/ton olefins       Usage per ton olefins     0     213     Kwh/ton olefins       Electricity tariff     0.00     0.65     RMB/twh       Sub-total     0     138     RMB/ton olefins       Total electricity cost per ton olefins     683     138     RMB/ton olefins       Depreciation     500     320     RMB/ton olefins	Pyrolysis fuel oil (0.168 tons / ton olefins)	0	629	RMB/ton olefins			
Electricity         Electricity (from coal to methanol)         Usage per ton methanol       500       0       Kwh/ton methanol         Electricity tariff       0.35       0       RMB/kwh         Electricity cost per ton methanol       175       0       RMB/ton methanol         Sub-total       525       0       RMB/ton olefins         Electricity (from methanol to olefins)       0       525       0       RMB/ton olefins         Usage per ton olefins       450       0       Kwh/ton olefins         Electricity (from methanol to olefins)       0.35       0.00       RMB/kwh         Sub-total       158       0       RMB/ton olefins         Electricity tariff       0.35       0.00       RMB/ton olefins         Usage per ton olefins       0       213       Kwh/ton olefins         Electricity (from naphtha to olefins)       0       0       138       RMB/ton olefins         Usage per ton olefins       0       138       RMB/ton olefins       0       138       RMB/ton olefins         Electricity tariff       0.00       0.65       RMB/ton olefins       0       138       RMB/ton olefins         Total electricity cost per ton olefins       683       138       RMB/ton ole		0	14,913	RMB/ton olefins			
Electricity (from coal to methanol)Usage per ton methanol5000Kwh/ton methanolElectricity tariff0.350RMB/KwhElectricity cost per ton methanol1750RMB/ton olefinsSub-total5250RMB/ton olefinsElectricity (from methanol to olefins)5250RMB/ton olefinsUsage per ton olefins4500Kwh/ton olefinsElectricity (ariff0.350.00RMB/KwhSub-total1580RMB/ton olefinsElectricity (from naphtha to olefins)0213Kwh/ton olefinsUsage per ton olefins0213Kwh/ton olefinsElectricity tariff0.000.65RMB/KwhSub-total0138RMB/ton olefinsElectricity cost per ton olefins683138RMB/ton olefinsDepreciation and Labor500320RMB/ton olefinsLabor and management overhead10050RMB/ton olefins	Electricity						
Usage per ton methanol5000Kwh/ton methanolElectricity tariff0.350RMB/KwhElectricity cost per ton methanol1750RMB/ton methanolSub-total5250RMB/ton olefinsElectricity (from methanol to olefins)5250RMB/ton olefinsUsage per ton olefins4500Kwh/ton olefinsElectricity tariff0.350.00RMB/KwhSub-total1580RMB/ton olefinsElectricity (from naphtha to olefins)1580RMB/ton olefinsUsage per ton olefins0213Kwh/ton olefinsElectricity tariff0.000.65RMB/KwhSub-total0138RMB/ton olefinsElectricity tariff0.000.65RMB/KwhSub-total0138RMB/ton olefinsElectricity cost per ton olefins683138RMB/ton olefinsDepreciation and Labor500320RMB/ton olefinsLabor and management overhead10050RMB/ton olefins	Electricity (from coal to methanol)						
Electricity tariff       0.35       0       RMB/Kwh         Electricity cost per ton methanol       175       0       RMB/ton methanol         Sub-total       525       0       RMB/ton olefins         Electricity (from methanol to olefins)       525       0       RMB/ton olefins         Usage per ton olefins       450       0       Kwh/ton olefins         Electricity tariff       0.35       0.00       RMB/Kwh         Sub-total       158       0       RMB/ton olefins         Electricity (from naphtha to olefins)       0       213       Kwh/ton olefins         Usage per ton olefins       0       0       213       Kwh/ton olefins         Electricity (from naphtha to olefins)       0       0       0.65       RMB/Kwh         Usage per ton olefins       0       0       138       RMB/ton olefins         Electricity tariff       0.00       0.65       RMB/Kwh       0       138       RMB/ton olefins         Sub-total       0       138       RMB/ton olefins       0       138       RMB/ton olefins         Depreciation and Labor       500       320       RMB/ton olefins       0       RMB/ton olefins	Usage per ton methanol	500	0	Kwh/ton methanol			
Electricity cost per ton methanol       175       0       RMB/ton methanol         Sub-total       525       0       RMB/ton olefins         Electricity (from methanol to olefins)       0       Kwh/ton olefins         Usage per ton olefins       450       0       Kwh/ton olefins         Electricity tariff       0.35       0.00       RMB/Kwh         Sub-total       158       0       RMB/ton olefins         Electricity (from naphtha to olefins)       0       213       Kwh/ton olefins         Usage per ton olefins       0       0.00       0.65       RMB/Kwh         Electricity tariff       0.00       0.65       RMB/Kwh         Sub-total       0       138       RMB/ton olefins         Total electricity cost per ton olefins       683       138       RMB/ton olefins         Depreciation and Labor       500       320       RMB/ton olefins	Electricity tariff	0.35	0	RMB/Kwh			
Sub-total5250RMB/ton olefinsElectricity (from methanol to olefins) Usage per ton olefins Electricity tariff Sub-total4500Kwh/ton olefinsBub-total0.350.00RMB/KwhSub-total1580RMB/ton olefinsElectricity (from naphtha to olefins) Usage per ton olefins0213Kwh/ton olefinsElectricity (from naphtha to olefins) Usage per ton olefins0213Kwh/ton olefinsElectricity tariff Sub-total0.000.65RMB/KwhTotal electricity cost per ton olefins683138RMB/ton olefinsDepreciation and Labor500320RMB/ton olefinsLabor and management overhead10050RMB/ton olefins	Electricity cost per ton methanol	1/5	0	RMB/ton methanol			
Electricity (from methanol to olefins)Usage per ton olefins4500Kwh/ton olefinsElectricity tariff0.350.00RMB/KwhSub-total1580RMB/ton olefinsElectricity (from naphtha to olefins)0213Kwh/ton olefinsUsage per ton olefins0213Kwh/ton olefinsElectricity tariff0.000.65RMB/KwhSub-total0138RMB/ton olefinsTotal electricity cost per ton olefins683138RMB/ton olefinsDepreciation and Labor500320RMB/ton olefins	Sub-total	525	U	RMB/ton olefins			
Usage per ton olefins4500Kwh/ton olefinsElectricity tariff0.350.00RMB/KwhSub-total1580RMB/ton olefinsElectricity (from naphtha to olefins)0213Kwh/ton olefinsUsage per ton olefins0213Kwh/ton olefinsElectricity tariff0.000.65RMB/KwhSub-total0138RMB/KwhTotal electricity cost per ton olefins683138RMB/ton olefinsDepreciation and Labor500320RMB/ton olefinsLabor and management overhead10050RMB/ton olefins	Electricity (from methanol to olefins)						
Electricity tariff       0.35       0.00       RMB/Kwh         Sub-total       158       0       RMB/ton olefins         Electricity (from naphtha to olefins)       0       213       Kwh/ton olefins         Usage per ton olefins       0       213       Kwh/ton olefins         Electricity tariff       0.00       0.65       RMB/Kwh         Sub-total       0       138       RMB/ton olefins         Total electricity cost per ton olefins       683       138       RMB/ton olefins         Depreciation and Labor       500       320       RMB/ton olefins         Labor and management overhead       100       50       RMB/ton olefins	Usage per ton olefins	450	0	Kwh/ton olefins			
Sub-total1580RMB/ton olefinsElectricity (from naphtha to olefins) Usage per ton olefins0213Kwh/ton olefinsElectricity tariff Sub-total0.000.65RMB/KwhSub-total0138RMB/ton olefinsTotal electricity cost per ton olefins683138RMB/ton olefinsDepreciation and Labor500320RMB/ton olefinsLabor and management overhead10050RMB/ton olefins	Electricity tariff	0.35	0.00	RMB/Kwh			
Electricity (from naphtha to olefins)Usage per ton olefins0213Kwh/ton olefinsElectricity tariff0.000.65RMB/KwhSub-total0138RMB/ton olefinsTotal electricity cost per ton olefins683138RMB/ton olefinsDepreciation and Labor500320RMB/ton olefinsLabor and management overhead10050RMB/ton olefins	Sub-total	158	0	RMB/ton olefins			
Usage per ton olefins0213Kwh/ton olefinsElectricity tariff0.000.65RMB/KwhSub-total0138RMB/ton olefinsTotal electricity cost per ton olefins683138RMB/ton olefinsDepreciation and Labor500320RMB/ton olefinsLabor and management overhead10050RMB/ton olefins	Electricity (from naphtha to olefins)						
Electricity tariff0.000.65RMB/KwhSub-total0138RMB/ton olefinsTotal electricity cost per ton olefins683138RMB/ton olefinsDepreciation and Labor500320RMB/ton olefinsLabor and management overhead10050RMB/ton olefins	Usage per ton olefins	0	213	Kwh/ton olefins			
Sub-total0138RMB/ton olefinsTotal electricity cost per ton olefins683138RMB/ton olefinsDepreciation and Labor500320RMB/ton olefinsLabor and management overhead10050RMB/ton olefins	Electricity tariff	0.00	0.65	RMB/Kwh			
Total electricity cost per ton olefins       683       138       RMB/ton olefins         Depreciation and Labor       500       320       RMB/ton olefins         Labor and management overhead       100       50       RMB/ton olefins	Sub-total	0	138	RMB/ton olefins			
Depreciation and Labor         Depreciation       500       320       RMB/ton olefins         Labor and management overhead       100       50       RMB/ton olefins	Total electricity cost per ton olefins	683	138	RMB/ton olefins			
Depreciation     500     320     RMB/ton olefins       Labor and management overhead     100     50     RMB/ton olefins	Depreciation and Labor						
Labor and management overhead 100 50 RMR/top olefine	Depreciation	500	320	RMB/ton olefins			
	Labor and management overhead	100	50	RMB/ton olefins			

Figure 93: CTO / Naphtha-to-olefins cost models – Inner Mongolia "self-owned coal mines" vs. E. China "naphtha" (Con't)

Inner Mongolia Self-owned coal minesEastern China NaphthaWater costWater price3.500.00RMB/ton waterWater usage150ton water/ton me water.cost per ton methanol530RMB/ton methanolWater cost per ton methanol530RMB/ton olefinWater olefinRMB/ton olefinWater grice3.500.00RMB/ton olefinWater olefinRMB/ton olefinWater price3.500.00RMB/ton olefinoRMB/ton olefinWater usage150ton water/ton oleono water/ton oleSub-total530.002.60RMB/ton waterono water/ton oleWater price0.002.60RMB/ton olefinoano water/ton oleWater price0.002.60RMB/ton olefinoaacWater usage012ton water/ton oleton water/ton olecaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa <t< th=""><th></th></t<>	
Self-owned coal mines       Naphtha         Water cost       Water price       3.50       0.00       RMB/ton water         Water usage       15       0       ton water/ton met         Water cost per ton methanol       53       0       RMB/ton olefin         Water price       3.50       0.00       RMB/ton water         Sub-total       158       0       RMB/ton olefin         Water price       3.50       0.00       RMB/ton vater         Water price       3.50       0.00       RMB/ton water         Water price       3.50       0.00       RMB/ton water         Water usage       15       0       ton water/ton ole         Sub-total       53       0       RMB/ton olefin         Water price       0.00       2.60       RMB/ton water         Water usage       0       12       ton water/ton ole         Sub-total       0       31       RMB/ton olefin         Effluent treatment cost per ton olefins       210       31       RMB/ton olefin         Effluent treatment (from coal to methanol)       30       0       ton effluent/ton on         Treatment volume       30       0       ton effluent/ton methan         Sub-total<	
Water cost         Water (from coal to methanol)         Water price       3.50       0.00       RMB/ton water         Water usage       15       0       ton water/ton methanol         Water cost per ton methanol       53       0       RMB/ton offin         Water (from methanol to olefins)       158       0       RMB/ton offin         Water usage       15       0       ton water/ton offin         Water usage       15       0       ton water/ton offin         Water usage       15       0       RMB/ton offin         Water usage       15       0       ton water/ton offin         Water usage       15       0       RMB/ton offin         Water usage       0       12       ton water/ton offin         Water usage       0       12       ton water/ton offin         Water usage       0       31       RMB/ton offin         Water usage       210       31       RMB/ton offin         Effluent treatment (from coal to methanol)       30       0       ton effluent/ton methan         Treatment price       0.95       0.00       RMB/ton effluent/ton methan         Treatment price       0.95       0.00       RMB/ton effluent/ton methan	
Water (from coal to methanol)Water price3.500.00RMB/ton waterWater usage150ton water/ton methanolSub-total530RMB/ton methanWater (from methanol to olefins)1580RMB/ton olefinWater price3.500.00RMB/ton waterWater usage150ton water/ton oleSub-total3.500.00RMB/ton olefinWater price3.500.00RMB/ton olefinWater usage150ton water/ton oleSub-total530RMB/ton olefinWater price0.002.60RMB/ton olefinWater usage012ton water/ton oleSub-total031RMB/ton olefinTotal water cost per ton olefins21031RMB/ton olefinEffluent treatment (from coal to methanol)300ton effluent/ton methanolTreatment price0.950.00RMB/ton effluent/ton methanTreatment cost per ton methanol290RMB/ton methanSub-total860RMB/ton olefin	
Water price3.500.00RMB/ton waterWater usage150ton water/ton meWater cost per ton methanol530RMB/ton methanSub-total1580RMB/ton olefinWater (from methanol to olefins)3.500.00RMB/ton waterWater price3.500.00RMB/ton waterWater usage150ton water/ton oleSub-total530RMB/ton olefinWater (from naphtha to olefins)530RMB/ton olefinWater price0.002.60RMB/ton waterWater price0.002.60RMB/ton olefinWater usage012ton water/ton oleSub-total031RMB/ton olefinTotal water cost per ton olefins21031RMB/ton olefinEffluent treatment (from coal to methanol)300ton effluent/ton neTreatment price0.950.00RMB/ton effluent/ton neSub-total300ton effluent/ton neTreatment price0.950.00RMB/ton effluent/ton neTreatment price0.950.00RMB/ton effluent/ton neTreatment price0.950.00RMB/ton methanTreatment cost per ton methanol290RMB/ton olefinSub-total860RMB/ton olefin	
Water usage150ton water/ton meWater cost per ton methanol530RMB/ton methanSub-total1580RMB/ton olefinWater (from methanol to olefins)3.500.00RMB/ton waterWater price3.500.00RMB/ton olefinWater usage150ton water/ton oleSub-total530RMB/ton waterWater (from naphtha to olefins)530RMB/ton olefinWater price0.002.60RMB/ton waterWater usage012ton water/ton oleSub-total031RMB/ton olefinTotal water cost per ton olefins21031RMB/ton olefinEffluent treatment cost300ton effluent/ton neTreatment price0.950.00RMB/ton effluent/ton neTreatment price0.950.00RMB/ton effluent/ton neTreatment cost per ton methanol290RMB/ton methanSub-total860RMB/ton olefin	
Water cost per ton methanol530RMB/ton methanolSub-total1580RMB/ton olefinWater (from methanol to olefins)3.500.00RMB/ton vaterWater price3.500.00RMB/ton olefinWater usage150ton water/ton oleSub-total530RMB/ton olefinWater (from naphtha to olefins)02.60RMB/ton vaterWater price0.002.60RMB/ton vaterWater usage012ton water/ton oleSub-total031RMB/ton olefinTotal water cost per ton olefins21031RMB/ton olefinEffluent treatment cost21031RMB/ton olefinEffluent treatment price0.950.00RMB/ton effluentTreatment price0.950.00RMB/ton effluentTreatment price0.950.00RMB/ton methanolTreatment cost per ton methanol290RMB/ton olefinSub-total860RMB/ton olefin	thanol
Sub-total1580RMB/ton olefinWater (from methanol to olefins)Water price3.500.00RMB/ton waterWater usage150ton water/ton oleSub-total530RMB/ton olefinWater (from naphtha to olefins)02.60RMB/ton waterWater price0.002.60RMB/ton water/ton oleWater usage012ton water/ton oleSub-total031RMB/ton olefinTotal water cost per ton olefins21031RMB/ton olefinEffluent treatment cost02.60RMB/ton olefinTreatment price0.950.00RMB/ton olefinTreatment price0.950.00RMB/ton effluent/ton nTreatment cost per ton methanol290RMB/ton methanSub-total860RMB/ton olefin	lol
Water (from methanol to olefins)Water price3.500.00RMB/ton waterWater usage150ton water/ton oleSub-total530RMB/ton olefinWater (from naphtha to olefins)Water price0.002.60RMB/ton waterWater usage012ton water/ton oleSub-total031RMB/ton olefinTotal water cost per ton olefins21031RMB/ton olefinEffluent treatment cost012Treatment price0.950.00RMB/ton effluentTreatment volume300ton effluent/ton nTreatment cost per ton methanol290RMB/ton olefinSub-total860RMB/ton olefin	5
Water price3.500.00RMB/ton waterWater usage150ton water/ton oleSub-total530RMB/ton olefinWater (from naphtha to olefins)530Water price0.002.60RMB/ton waterWater usage012ton water/ton oleSub-total031RMB/ton olefinTotal water cost per ton olefins21031RMB/ton olefinEffluent treatment (from coal to methanol)300ton effluent/ton neTreatment price0.950.00RMB/ton effluentTreatment cost300ton effluent/ton neSub-total300RMB/ton olefin	
Water usage150ton water/ton oleSub-total530RMB/ton olefinWater (from naphtha to olefins)Water (from naphtha to olefins)Vater (from naphtha to olefins)Water price0.002.60RMB/ton waterWater usage012ton water/ton oleSub-total031RMB/ton olefinTotal water cost per ton olefins21031RMB/ton olefinEffluent treatment cost21031RMB/ton olefinTreatment price0.950.00RMB/ton effluentTreatment volume300ton effluent/ton nTreatment cost per ton methanol290RMB/ton olefinSub-total860RMB/ton olefin	
Sub-total530RMB/ton olefinsWater (from naphtha to olefins)Water price0.002.60RMB/ton waterWater usage012ton water/ton oleSub-total031RMB/ton olefinTotal water cost per ton olefins21031RMB/ton olefinEffluent treatment cost </td <td>fins</td>	fins
Water (from naphtha to olefins)Water price0.002.60RMB/ton waterWater usage012ton water/ton oleSub-total031RMB/ton olefinTotal water cost per ton olefins21031RMB/ton olefinEffluent treatment costEffluent treatment (from coal to methanol)0.950.00RMB/ton effluentTreatment price0.950.00RMB/ton effluent/ton nTreatment cost per ton methanol290RMB/ton methanSub-total860RMB/ton olefin	5
Water price0.002.60RMB/ton waterWater usage012ton water/ton oleSub-total031RMB/ton olefinTotal water cost per ton olefins21031RMB/ton olefinEffluent treatment cost21031RMB/ton olefinEffluent treatment (from coal to methanol)0.950.00RMB/ton effluentTreatment price0.950.00RMB/ton effluent/ton nTreatment cost per ton methanol290RMB/ton methanSub-total860RMB/ton olefin	
Water usage012ton water/ton oleSub-total031RMB/ton olefinTotal water cost per ton olefins21031RMB/ton olefinEffluent treatment cost21031RMB/ton olefinEffluent treatment (from coal to methanol)778Treatment price0.950.00RMB/ton effluent/ton noTreatment volume300ton effluent/ton noTreatment cost per ton methanol290RMB/ton methanolSub-total860RMB/ton olefin	
Sub-total031RMB/ton olefinTotal water cost per ton olefins21031RMB/ton olefinEffluent treatment costEffluent treatment (from coal to methanol)Treatment price0.950.00RMB/ton effluentTreatment volume300ton effluent/ton nTreatment cost per ton methanol290RMB/ton methanSub-total860RMB/ton olefin	fins
Total water cost per ton olefins21031RMB/ton olefinEffluent treatment costEffluent treatment (from coal to methanol)Treatment price0.950.00RMB/ton effluentTreatment volume300ton effluent/ton nTreatment cost per ton methanol290RMB/ton methanSub-total860RMB/ton olefin	s
Effluent treatment cost         Effluent treatment (from coal to methanol)         Treatment price       0.95       0.00       RMB/ton effluent         Treatment volume       30       0       ton effluent/ton n         Treatment cost per ton methanol       29       0       RMB/ton methan         Sub-total       86       0       RMB/ton olefinities	s
Effluent treatment (from coal to methanol)Treatment price0.950.00RMB/ton effluentTreatment volume300ton effluent/ton nTreatment cost per ton methanol290RMB/ton methanSub-total860RMB/ton olefinities	
Treatment price0.950.00RMB/ton effluentTreatment volume300ton effluent/ton nTreatment cost per ton methanol290RMB/ton methanSub-total860RMB/ton olefination	
Treatment volume300ton effluent/ton mTreatment cost per ton methanol290RMB/ton methanSub-total860RMB/ton olefinitian	
Treatment cost per ton methanol290RMB/ton methanSub-total860RMB/ton olefine	nethanol
Sub-total 86 0 RMB/ton olefin	lol
	5
Effluent treatment (from methanol to olefins)	
Treatment price 0.95 0.00 RMB/ton effluent	
Treatment volume 30 0 ton effluent/ton n	nethanol
Sub-total 29 0 RMB/ton olefin	5
Effluent treatment (from naphtha to olefins)	
Treatment price 0.00 1.30	
Treatment volume 0 12	
Sub-total 0 16	
Total effluent treatment cost per ton olefins11416RMB/ton olefins	
Others	
R&M and insurance 80 96 RMB/ton olefin	5
Other production supplies & utilities 750 900 RMB/ton olefin	5
Transportation cost for olefins product	
Distance 1,889 0 km	
Transportation cost 0.30 0 RMB/ton km	
Transportation cost per ton olefins5670RMB/ton olefin	5
Total production cost per ton olefins3,8737,167RMB/ton olefin	s
640 1,185 USD/ton olefins	;

Source: China Petroleum and Chemical Industry Federation, CEIC, Deutsche Bank

## Figure 94: CTO / (US) natural gas liquids to olefins cost models

		Case 1 Inner Mongolia Self-owned co	a al mines	Case 4 North America Natural Gas Lie	nuids
edstock Cost					1
Coal / Natural	gas price	34	USD/ton coal	5.0	USD/mmbtu
Coal / Natural	l das usade	4.2	ton coal/ton olefins	45.5	mmbtu/ton olefins
Coal / Natura	al gas cost	144	USD/ton olefins	227	USD/ton olefins
lectricity					
Electricity tari	ff	116.8	USD/MWH	46.8	USD/MWH
Electricity usa	age	0.95	MWH	0.15	MWH
Total electri	city cost	111	USD/ton olefins	7	USD/ton olefins
uel					
Fuel price		0.0	USD/mmbtu	5.0	USD/mmbtu
Fuel consum	ption	0.00	mmbtu	22.1	mmbtu
Total fuel co	st	0	USD/ton olefins	110	USD/ton olefins
ater usage		0.500		0.005	
Water price		3.500	RMB/ton	0.065	USD/M gallons
Water usage	4	60.0	ton/ton olefins	61.5	
l otal water d	cost	34	USD/ton olefins	4	USD/ton olefins
atalyst Total catalys	t cost	5	USD/ton olefins	5	USD/ton olefine
Total catalys		5	05D/ton olenns	5	
redit by-produ	ct sales				
Propylene	(0.04 tons / ton olefins)	0	USD/ton olefins	52	USD/ton olefins
Crude C4s	(0.04 tons / ton olefins)	0	USD/ton olefins	44	USD/ton olefins
Pygas	(0.02 tons / ton olefins)	0	USD/ton olefins	23	USD/ton olefins
Hydrogen	(0.08 tons / ton olefins)	0	USD/ton olefins	41	USD/ton olefins
Fuel	(6.12 mmBtu / ton olefins)	0	USD/ton olefins	31	USD/ton olefins
l otal co-pro	duct sales	0	USD/ton olefins	190	USD/ton olefins
ther cost		470	LICD/top alafina		
	anence, insurance	1/2	USD/ton olefins	(/	
	cost	01 252		9/ <b>17</b> A	
Total - Other	cosi	200	USD/ton Olenns	174	03D/ton olenns
ransportation o	cost for olefins product				
Distance		1,889.0	кm	0.0	KM
Transportatio	n cost	0.05	USD/ton km	0.0	USD/ton km
Transportati	on cost per ton olefins	92	USD/ton olefins	0	USD/ton olefins
roduction cost	per ton olefins	640	USD/ton olefins	338	USD/ton olefins

# Water & Pollution

## Figure 95: Global water scarcity



# Water scarcity in China (Figure 95)

According to China's Ministry of Water Resources, the country has roughly 2,100 cubic meters of water per capita (2013), which is only 28% of the global average of 7,500 cubic meters per capita.

 Figure 96: UN definitions of water availability / impact

 Water availability
 What it means...

 Above 1,700 m³ per capita per year
 Shortage will be rare

 1,000 - 1,700 m³ per capita per year
 May experience periodic / regular water stress

 500 - 1,000 m³ per capita per year
 Water scarity affects health, economic development and human well being

 Below 500 m³ per capita per year
 Water availability is a primary constraint of life

#### Deutsche Bank AG/Hong Kong

# Water usage in China

According to the United Nations water for irrigation and food production accounts for c.67% of global freshwater withdrawal while industrial and residential represents c.18% and c.15% of usage. In China, c.62% of water is used in agricultural while industrial and residential account for 26% and 12% respectively. China's distribution of water use is quite similar to that mapped to global water use (Figure 97).



Figure 97: Water usage by sector by region (2012)

# China's water resource location vs. usage

Water resources are unevenly distributed in China – extremely scarce in the North and abundant in the South. The water resource in China's mountainous southwest area can reach 25,000 cubic meters per capita per year (3.3x global average) while in China's Northern regions the water resource can be as low as 500 cubic meters per capita per year (8% of global average).

China's coal resource and the majority of its CTO facilities are located in the north-central and north-western provinces of Xinjiang, Inner Mongolia, Shaanxi and Shanxi (Figure 12 & 13). China's coal and the majority of its CTO projects are located in the water-scarce areas of China (Figure 100). This geographical mismatch makes water scarcity a critical issue for China's burgeoning coal to industry.

## Water use comparisons by product

According to Pucheng Clean Energy Chemical Company Ltd. (a subsidiary of Shaanxi Coal & Chemical Industry Group Company), the amount of water

2 July 2014 Chemicals China's Coal to Olefins Industry

consumed per ton olefin production ("MTO" - propylene & ethylene) is 50 to 60 tons of water per 1 ton of olefins, where as the MTP process consumes 36 to 45 tons of water to 1 ton of propylene (Figure 98). The water consumption required by Coal-to-Chemicals (MTO and / or MTP) is materially higher than the amount of water required in the Coal-to-Liquids ("coal to oil" = gasoline / diesel) process which is 15-17 tons of water per 1 ton of gasoline/ diesel produced. Materials published by The Pucheng Clean Energy Chemical Company regarding water use all specify the use of "fresh water" rather than brackish and / or sea water.

For coal to olefins (CTO), the amount of water consumed per ton of olefin production is effectively the sum of water consumed in the "Coal to Methanol" (CTM) process plus water consumed in the "Methanol to Olefins" (MTO) process. Converting Coal to Methanol requires 12-15 tons of water per ton of methanol; it takes 3 tons of methanol to produce 1 ton of olefins. An additional 50 to 60 tons of water is required to convert 1 ton of methanol into olefins (MTO). In sum, the full conversion of coal-to-methanol-to-olefins requires approximately 86 to 105 tons water for each ton of olefin production.

### Calculation (for reference):

### Low range: CTM $(12 \times 3) + MTO 50 = 86$ ton water / ton olefins (CTO)

#### High range: CTM (15x 3) + MTO 60 = 105 ton water / ton olefins (CTO)

Figure 98: Comparison of feedstock / utilities consumption on different coalto-chemicals projects

	Coal consumption	Water consumption	Electricity usage	Carbon emission
	(ton of coal / ton of chemical)	(ton of water / ton of chemical)	(KWh / ton of chemical)	(ton of CO ₂ / ton of chemical)
Methanol to Olefins (MTO)	7 - 8	50 - 60	1,500 - 2,000	10 - 12
Methanol to Propylene (MTP)	8 - 9	36 - 45	2,000 - 2,500	10 - 12
<b>Coal to Liquids</b> (principally diesel and gasoline; Indirect coal liquefaction)	4 - 5	15 - 17	300 - 400	7 - 10
Coal to Synthetic Natural Gas	3.5 / 1000m ³	6 - 10 / 1000m ³	200 - 300 / 1000m ³	> 10 / 1000m ³
Coal to Methanol	2 - 3	12 - 15	300 - 400	3 - 4
	0. /			

Source: Company data, Deutsche Bank

Inner Mongolia Yitai Coal Co., Ltd. (900948 CH), one of the largest non-state owned coal mining groups in China, provided another set of water consumption data. Yitai estimates that only 20 tons of water is needed produce 1 ton of olefins (CTO). The Shenhua Group, with nearly half of China's MTO / CTO capacity in operation (1.06 out of 2.36 mpta) (Figure 76), has yet to disclose water consumption data from either of its operating facilities.

For "Coal to Liquids" ("Coal to Oil" / gasoline &/ or diesel) and "Coal to Syngas" projects, there is also a large variation in data regarding required water usage. Water consumption for converting coal to synthetic gas ranges

from 3.5 to 6.0 tons of water per 1,000 cubic meters of syngas, while 9 to 17 tons of water is needed per ton of oil product (gasoline/ diesel) (Figure 102).

We suspect that the wide range of values for water consumption per ton (or per 1,000 cubic meter) of coal-to-product is most probably due to 1) the fact that we are only in the initial stages of this industry in China and world-wide; 2) water reporting standards in China are probably not specified / unified across the industry; and 3) it probably does not behoove any of the Chinese corporate(s) operating in the space to actually make this information public.

### Figure 99: China's Coal-to-liquid (gasoline / diesel) in operation

Project	Capacity (mln tons)	Company	Location		
Direct Liquefaction	_				
Shenhua Baotou CTL Project (1st production line of Phase I)	1.08	Shenhua Group : 100%	Inner Mongolia		
Indirect Liquefaction	_				
Lu'an coal-to-oil project	0.21	Lu'an Group : 100%	Shanxi		
Shenhua Ordos CTL Project	0.18	Shenhua Group : 100%	Inner Mongolia		
Yitai CTL Project (Phase I)	0.16	Yitai Coal (3948 HK) : 51% I-Mongolia Mining Industry Group : 39.5% I-Mongolia Yitai Group : 9.5%	Inner Mongolia		
	0.55				
Methanol to Gasoline					
Jinmei MTG project	0.10	Jinmei Group : 100%	Shanxi		
Total CTL capacity in operation	1.73				
Source: Asiachem; ICIS; NDRC; Company data;, Deutsche Bank					

## Emissions

China is making an effort to reduce industrial emissions by eliminating excess low-efficient capacity of high emission industries. China's biggest air polluters according to National Resources Defense Council statistics are:

## Figure 100: Percentage contribution by industry to China's air pollution

Combined heat and power generation	21.0%
Thermal power generation	20.8%
Cement manufacturing	10.0%
Iron & steel smelting industry	9.3%
Chemical industry	6.1%
Non-ferrous metallurgy	5.9%
Paper manufacruring	3.5%
Coking industry	3.3%
Sugar industry	2.9%
Oil refinery and processing	2.2%
Heat production	2.1%
Others	13.0%
_	100.0%
ource: National Resources Defense Council, Deutsche Bank	

The above table dovetails well with recent comments from our consulting partner Wood Mackenzie with regards to government initiatives to replace heat and power generators with natural gas generators. We think the government will fall short of its objectives, but it's a good start ("Asia Natural Gas – On the road with Wood Mackenzie" dated 12-May 2014.)

Major air pollutants in China are SOx, NOx,  $CO_{2}$ , CO, PM10 and 2.5 (Figure 101).

	Power plants	Industrial use	Transportation	Residential / commercial	Total
SO ₂	9,199	15,254	374	2,888	27,715
NOx	9,629	9,541	7,042	2,604	28,816
CO ₂	3,253	4,635	834	1,454	10,176
СО	1,400	90,058	32,676	63,765	187,899
PM10	1,233	10,254	709	4,794	16,990
PM2.5	717	6,394	672	4,429	12,212
* All pollut	ants are in kt exc	ept CO ₂ (in millio	on ton)		

Figure 101: Emission of China by sectors (2010)

Source: "Emissions of anthropogenic atmospheric pollutants and CO2" by researchers of Harvard University and Nanjiang University, Deutsche Bank

Provinces that contribute most to China's air pollution (Appendix 17 & 18) and the principal contributors to the pollution are:

- Shandong province: refining, chemicals and general industry;
- Hebei province: steel and iron production / coal in adjacent provinces;

2 July 2014 Chemicals China's Coal to Olefins Industry

- Henan province: vehicles / residential activities;
- Jiangsu province: steel and textiles;
- Guangdong: teapot refineries and general industrialization;
- Sichuan: vehicles / residential activities;
- Shanxi & Inner Mongolia: coal production and coal transport.

Hebei province is a center for China's pollution problems. The principal reasons for this are 1) Hebei province is located (i) near the coal-rich provinces of Inner Mongolia, Shanxi and Henan, (ii) near China's principal coal receiving port (Qinhuangdao), and (iii) the province serves as a thoroughfare for China's principal coal transport (Daqin railway); 2) Hebei is the capital of China's steel and iron manufacturing activities; and 3) Hebei boarders the greater Beijing city area: to reduce air pollutants in Beijing the government has relocated state-owned heavy industry away from Beijing and into Hebei province.

# CTO emissions:

Coal to Olefin (CTO) projects produce an abundance of  $CO_2$  emissions. The data in Figure 102 has been provided by the Shenhua Group and represents  $CO_2$  emissions from a "typical 600k tpa CTO project". Given the fact that there are very few of such projects in operation, we are not sure what "typical" actually means – but, we will ignore that issue.

From the chart below, we note that the production of 1 ton of olefins and / or propylene from roughly 3.0 tons of methanol (MTO/ MTP) will emit 10.07 tons of carbon dioxide (Figure 102). To be more precise, the Shenhua literature states that a typical 600k Tpa MTO/ MTP project will produce 6.0 to 7.2 mln tpa of  $CO_2$  effluent.

Extending this analysis to a coal-to-olefins (CTO) project we note in Figure 102 that 3 to 4 tons of CO2 is emitted for each ton of coal converted to methanol. As such, we estimate that "a typical" 600k Tpa CTO project, operating at 100% utilization will produce 11.4 to 14.4 million tons of  $CO_2$  per year.

### Calculation for reference:

### Lower range = (10 + 3 x 3) x 600,000 = 11.4 million tons CO2

### *Upper range* = (12 + 4 x 3) x 600,000 = 14.4 million tons CO2

A standard (600k Tpa) CTO project cited in center Beijing would increase  $CO_2$  pollutants in the capital city by 14.3%. To be fair: 1) a standard CTO project cited in central Hebei province would increase  $CO_2$  pollutants in the province by 1.8%; whereas 2) a standard CTO project cited in central Tibet (China) would increase  $CO_2$  pollutants in the province by 350%. (Appendix 17-18).

During the CTO synthesis process,  $CO_2$  is emitted principally during the coal gasification (c.36.4%) process and the Syngas purification (c.60.3%) process (Figure 102). Since the emission of  $CO_2$  in the CTO process is highly concentrated in only two processes, "Carbon dioxide Capture and Storage"

(CCS) is technically feasible for CTO / MTO projects. CCS is the process of capturing emitted  $CO_2$  from various industrial processes. However, CCS is still not an active part of China's current "coal-to" projects.

Emission Source	% Contribution to each ton of CO ₂ emitted	Concentration of CO ₂ emitted NOTE 1	CO ₂ emission for each ton of olefins	CO ₂ emission for whole plant NOTE 2						
	(%)	(%)	(ton CO $_2$ / ton olefins)	(mIn ton CO $_2$ / year)						
Syngas Purification	60.3%	88.1%	6.07	3.64						
Coal Gasification	36.4%	6.0%	3.67	2.20						
Sulfur Recovery	1.0%	28.1%	0.10	0.06						
Other processes	2.3%	21.0%	0.23	0.14						
	100.0%	-	10.07	6.04						
NOTES: 1) This refers to number of CO2 particles in 100 gaseous particles of effluent stream 2) Assume 100% operating rate										

Figure 102: CTO – 600k tpa CO2 emission at different stage of Olefins synthesis

China has one small pilot CCS facility in operation (Shenhua Baotou CTL) and two more in the planning phase: 1) Shenhua is planning a large scale CCS facility at its Ningxia coal-to-liquids project due on line "after 2018e"; while 2) China Huaneng Group and China Power Investment Corporation are studying / "planning" CCS from power plant flue gas in Beijing, Tianjin, Shanghai and Chongqing.

The Shenhua Baotou-CTL CCS facility has a capacity of 100,000 tons of  $CO_2$  per year, was built in 2010 by the Shenhua Group for its coal to liquids (gasoline / diesel) project in Inner Mongolia. The sequestration facility is built near the liquefaction plant; the  $CO_2$  storage site is located 11 km to the west of the liquefaction plant. In Shenhua's CCS process (Figure 103), the major processes include:





### CO₂ capture

 $CO_2$  from the coal gasifier is compressed, de-sulfurised, de-hydrated, distillated and refrigerated. Refrigerated (cryogenic) liquid  $CO_2$  is then trucked to temporary (above ground) storage units and thereafter trucked / pumped into long-term underground storage areas.

### CO₂ storage

Cryogenic liquid  $CO_2$  is transported by trucks to storage site, where  $CO_2$  is unloaded to a buffer tank for temporary storage. When the amount of  $CO_2$  inside buffer tank reaches certain level, the storage pump will inject cryogenic liquid  $CO_2$  into injection well for storage.

According to Xinhua (the state news agency of China):

1) Current CCS cost in China is c.280 Rmb / ton  $CO_2$  (c.45 USD / ton). This amount includes depreciation charge, staff and utilities cost.  $CO_2$  capture and storage costs are 200 Rmb / ton  $CO_2$  and 80 Rmb / ton  $CO_2$  respectively.

2) Shenhua Group estimated that the CCS cost can be lowered from to 25 USD / ton from 45 USD / ton if CCS is implemented in large scale.

3) Shenhua Group also stated that liquid  $CO_2$  will be transported by pipelines instead of trucks in the future (no exact time schedule is provided) so that the cost can be further reduced.

# Emission from Syngas production process

		Figure	104:	Emission	at	<b>Syngas</b>	production	stage
--	--	--------	------	----------	----	---------------	------------	-------

Emission Source	Emission details	<b>Control Procedures</b>
Coal pre-treatment		
Storage, handling and crushing	Consist of coal dust at transfer points esp those exposed to wind erosion. Significant source	Water sprays and polymer coatings can be installed at storage site. Water sprays and enclosures vented to baghouses can be installed at crushing
Drying	Consist of coal dust, combustion products from heater and organics volatilized from coal. Significant source	Electrostatic precipitators and baghouse can be installed for dust control. Low drying temperature can reduce organics formation
Coal Gasification		
Feeding - Vent gas	The gas exiting coal gasifier may contain hazardous species such as Hydrogen Sulfide, Sulfur Oxides, Ammonia, Methane, tars and particulates. The size and composition depends on the type of gasifiers	May implement desulfurization for Sulfur Dioxide control. Combustion modifications can be used for reducing particulates, Carbon Monoxide, Nitrogen Oxides and hydrocarbons
Ash dust	Ash dust may be released from all gasifiers that are not slagging or agglomerating ash units	The emissions have not been sufficiently characterized to recommend necessary controls

Source: U.S. Energy Information Administration, Deutsche Bank

# Listed companies / DB rating as mentioned in FITT report

**Air Liquide SA** (AI FP; Buy), through its subsidiaries, produces, markets, and sells industrial and healthcare gases worldwide. These gases include liquid nitrogen, argon, carbon dioxide, and oxygen. The Company also produces welding equipment, diving equipment, and technical-medical equipment. Air Liquide sells its products throughout Europe, the United States, Canada, Africa, and Asia.

**Air Products and Chemicals, Inc.** (APD UN; Buy) produces industrial atmospheric and specialty gases, and performance materials and equipment. The Company's products include oxygen, nitrogen, argon, helium, specialty surfactants and amines, polyurethane, epoxy curatives and resins. Air Products and Chemicals, Inc. products are used in the beverage, health and semiconductors fields.

**China BlueChemical Ltd.** (3983 HK) manufactures nitrogen fertilizers. The Company produces ammonia and urea.

**China Coal Energy Company Ltd** (1898 HK; Hold) mines and markets thermal coal and coking coal. The Company also manufactures coal mining equipment and offers coal mine design services.

**China Energy Ltd**. (CEGY SP) produces Dimethyl Ether (DME) and Methanol. The Company sells to fuel distributors, chemical producers, and traders.

**China Petroleum and Chemical Corporation** (386 HK) refines, produces and trades petroleum and petrochemical products such as gasoline, diesel, jet fuel, kerosene, ethylene, synthetic fibers, synthetic rubber, synthetic resins, and chemical fertilizers. Also, The company explores for and produces crude oil and natural gas in China.

**China Sanjiang Fine Chemicals Co Ltd.** (2198 HK) manufactures and supplies consumer chemicals and their ingredients. The Company's main product is ethylene oxide and AEO surfactants which are the core components for household cleansing and cosmetic products.

**China Shenhua Energy Company Limited** (1088 HK; Buy) is an integrated coalbased energy company focusing on the coal and power businesses in China. The Company also owns and operates an integrated coal transportation network consisting of dedicated rail lines and port facilities.

**CNOOC Limited** (883 HK; Hold), through its subsidiaries, explores, develops, produces and sells crude oil and natural gas. The Group's core operation areas are Bohai, Western South China Sea, Eastern South China Sea and East China Sea in offshore China. Internationally, the Group has oil and gas assets in Asia, Africa, North America, South America and Oceania.

**Datang International Power Generation Company Limited** (991 HK; Buy) develops and operates power plants, sells electricity, repairs and maintains power equipment, and provides power-related technical services.

**Dongfang Electric Corporation Limited** (1072 HK; Buy) manufactures and sells hydro and steam power generators and AC/DC electric motors. The Company also provides repair, upgrade, maintenance, and other services.

**GD Power Development Co., Ltd.** (600795 CH) generates and distributes electric power and heat throughout China. The Company also invests in new energy development and environmental protection projects.

**General Electric Company** (GE US; Buy) is a globally diversified technology and financial services company. The Company's products and services include aircraft engines, power generation, water processing, and household appliances to medical imaging, business and consumer financing and industrial products.

**Guanghui Energy Co., Ltd.** (600256 CH) is principally engaged in energy development, automotive services and real estate property leasing. The Company is in the business of coal mining and related coal chemical manufacturing. The Company is also engaged in the processing and distributing of granite materials and trading of general merchandise such as plastic doors and windows.

**Hangzhou Hangyang Co., Ltd.** (002430 CH) manufactures and sells air separation equipment, industrial gas products and petrochemical equipment. The Company's products are medium & large sets of air separation equipment, small-scale air separation equipment, liquefied nitrogen wash cold box, liquefied natural gas separation equipment, and liquefied petroleum gas storage & distribution devices.

**Inner Mongolia Yitai Coal Co., Ltd.** (900948 CH) operates in coal mining, processing, and distribution. Through its subsidiaries, the Company also operates in hotel management, licorice planting, pharmaceutical manufacturing, and manages roadways.

**Inner Mongolia Yuan Xing Energy Co., Ltd.** (000683 CH) manufactures and markets natural alkali chemicals. The Company's products include methanol, dimethyl formamide, synthetic ammonia, urea, formaldehyde, dimethyl ether, soda ash, bicarbonate, and other related chemicals.

**Jiangsu SOPO Chemical Co., Ltd.** (600746 CH) manufactures baking soda, caustic soda, and bleach products. The Company, through its subsidiaries, distributes electricity and supplies steam.

**Johnson Matthey PLC** (JMAT LN; Buy) is a specialty chemicals company which manufactures catalysts, pharmaceutical materials, and pollution control systems. The Company also refines platinum, gold and silver, and produces color and coating materials for the glass, ceramics, tile, plastics, paint, ink, and construction industries. Johnson Matthey has operations around the world.

**KBR, Inc.** (KBR US) is a global engineering, construction, and services company supporting the energy, petrochemicals, government services, and civil infrastructure sectors. The Company offers a wide range of services through two business segments, Energy and Chemicals (E&C) and Government and Infrastructure (G&I).

**Kingboard Chemical Holdings Limited** (148 HK), through its subsidiaries, manufactures laminates, copper foil, glass fabric, glass yarn, bleached kraft paper, printed circuit boards, and chemicals.

**LCY Chemical Corporation** (1704 TT) manufactures chemicals. The Company produces formaldehyde, acetaldehyde, ethyl acetate, methanol, acetone, methyl isobutyl ketone, liquefied petroleum gas and synthetic resins.

**Linde AG** (LIN GY; Buy) is a gases and engineering company. The Gases Division offers a wide range of industrial and medical gases mainly used in energy sector, steel production, chemical processing, as well as in food processing. The Engineering Division develops olefin plants, natural gas plants and air separation plants, as well as hydrogen and synthesis gas plants.

**Methanex Corporation** (MX CN) produces and markets methanol. The methanol is used to make industrial and consumer products including windshield washer fluid, plywood floors, paint, sealants and synthetic fibers.

**Methanol Chemicals Co** (CHEMANOL AB) produces methanol derivatives. The Company's products include aqueous and urea formaldehydes, formaldehyde derivatives, super plasticizers and various amino resins.

**Mitsubishi Corporation** (8058 JP) is a general trading company. The Company has business groups such as New Business Initiatives, IT & Electronics, Fuels, Metals, Machinery, Chemicals, Living Essentials, and Professional Services. Mitsubishi diversifies by satellite communications through a joint venture.

**MITSUBISHI GAS CHEMICAL COMPANY, INC.** (4182 JP) produces chemical products such as xylene and methanol. The Company also manufactures engineering plastics and specialty chemicals.

**MITSUI & CO., LTD.** (8031 JP) is a general trading company. The Company has operating groups including Iron and Steel, Non-Ferrous Metals, Machinery, Chemicals, Foods, Energy, Textiles, and General Merchandise. Mitsui also operates real estate and overseas development projects.

**Nylex (Malaysia) Berhad** (NYL MK) manufactures and sells vinyl-coated fabrics, calendared film and sheeting, and other plastic products such as geotextiles and prefabricated sub-soil drainage systems. The Company, through its subsidiaries, manufactures electrical engineering products, roofing products, glass wool insulation products, bulk containers, and golf bags.

**PetroChina Company Limited** (857 HK; Buy) explores, develops, and produces crude oil and natural gas. The Company also refines, transports, and distributes crude oil, petroleum products, chemicals, and natural gas.

**Petronas Chemicals Group Bhd.** (PCHEM MK; Hold) produces a diversified range of petrochemical products such as olefins, polymers, fertilizers, methanol, and other basic chemicals and derivative products.

**Praxair, Inc.** (PX UN; Buy) supplies gas to industries primarily located in North and South America. The Company produces, sells, and distributes atmospheric gases including oxygen, nitrogen, argon, and rare gases, as well as process

gases including carbon dioxide, helium, hydrogen, electronics gases, and acetylene. Praxair also supplies metallic and ceramic coatings and powders.

**PTT Global Chemical PCL** (PTTGC TB; Hold) is a fully integrated petrochemical and chemical company. The Company's products are derived from its main product, Olefins, namely ethylene and propylene.

**Royal Dutch Shell PLC** (RDSA LN; Hold), through subsidiaries, explores for, produces, and refines petroleum. The Company produces fuels, chemicals, and lubricants. Shell owns and operates gasoline filling stations worldwide.

**Saudi Basic Industries Corporation** (SABIC AB; Buy) manufactures chemicals and steel. The Company produces methanol, ethylene, propylene, benzene, toluene, xylene, industrial gases, thermoplastic resins, polyester, melamine, urea fertilizers, and long and flat hot and cold rolled steel products.

**Saudi International Petrochemical Co** (SIPCHEM AB) is a petrochemical company. The Company produces methanol and butanediol.

**Shenergy Company Limited** (600642 CH) develops, constructs, and invests in electric power and other energy related projects. The Company distributes electric power, heat, and gas.

**Siemens AG** (SIE GY, Buy) is an engineering and manufacturing company. The Company focuses on four major business sectors including infrastructure and cities, healthcare, industry and energy. Siemens AG also provides engineering solutions in automation and control, power, transportation, and medical.

**Sinopec Engineering (Group) Co., Ltd.** (2386 HK; Buy) provides petrochemical engineering and construction services.

**Sojitz Corporation** (2768 JP) is a trading company. The Company has business divisions such as Machinery & Aerospace, Energy & Mineral Resources, Chemicals & Plastics, Real Estate Development & Forest Products, Consumer Lifestyle Business, and New Business Development Group. Sojitz was formed through the integration of Nichimen and Nissho Iwai.

**The Dow Chemical Company** (DOW UN; Hold) is a diversified chemical company that provides chemical, plastic, and agricultural products and services to various essential consumer markets. The Company serves customers in countries around the world in markets such as food, transportation, health and medicine, personal care, and construction.

**Wison Engineering Services Co Ltd** (2236 HK) is a chemical engineering, procurement and construction management (or EPC) service provider in China.

**Yangquan Coal Industry Group Co Ltd.** (600348 CH) produces, processes, and sells coal. The Company also generates electricity and heat. Yangquan Coal sells its products domestically and exports to other countries.

**Yingde Gases Group Co., Ltd.** (2168 HK; Buy) manufactures industrial gases. The Company produces and delivers oxygen, nitrogen, argon, hydrogen, and other gases to its customers throughout China.

Project	Company Name	Location	Output (min tpa)	Status	Coal consumption (mIn tpa)	Est delivery date	Capex (RMBbn)
Producing:							
Shenhua Baotou coal-to-olefin (D-MTO) project	Shenhua (1088 HK) : 100%	Inner Mongolia	0.60	In operation	4.6	2011	16
pnase i			0.60	_			
NDRC Approved:	_						
China Coal coal-to-olefin project	China Coal Group : 100%	Shaanxi	0.60	Received NDRC approval		2016/2017	NA
Sinopec Zhong Tian He Chuang coal-to-olefin project	Sinopec (386 HK) : 38.75%; China Coal Energy (1898 HK) : 38.75%; Shanghai Shenergy (600642 CH) : 12.5%; Inner Mongolia Manshi Coal Group : 10%	Inner Mongolia	1.20	Received NDRC approval		2016	NA
Huahong Huijin coal-to-olefin project	Huahong Huijin Corp : 100%	Gansu	0.60 2.40	_Received NDRC approval		2016/2017	NA
Possible Projects							
CPI Western Inner Mongolia coal-to-olefin project Guodian Pingmei Nileke olefin project	Chian Power Investment Corporation : 100% Guodian(600795 CH), Pingzhuang Coal, Nileke	Inner Mongolia	0.80	Preliminary work	4.7	2017	NA
	NOTE 1	Xinjiang	0.60	Preliminary work	3.5	NA	NA
Fanhai Group coal-to-olefin project	Fanhai Group : 100%	Inner Mongolia	1.20	Preliminary work	7.9	NA	NA
Zhejiang Tiansheng Group coal-to-olefin project	Zhejiang Tiansheng Holding Group : 100%	Inner Mongolia	0.60	Preliminary work	3.5	NA	NA
Xinweng Xinjiang Yinan coal-to-olefin project	Xinwen Mining Co : 100%	Xinjiang	0.60	Preliminary work	3.5	NA	NA
Qinghua coal-to-olefin project	Qinghua Group : 100%	Xinjiang	2.00	Preliminary work	11.8	NA	NA
Chizhou coal-to-olefin project	NOTE 2	Anhui	0.60	Preliminary work	3.5	NA	NA
Panjiang coal-to-olefin project	Panjiang Group : 100%	Guizhou	0.60	Preliminary work	3.5	NA	NA
Shenhua coal-to-olefin (DMTO) project phase II	Shenhua Group : 100%	Inner Mongolia	0.70	Preliminary work		NA	NA
Shenhua/Dow coal-to-olefin project	Shenhua Group : 100%	Shaanxi	<u>1.20</u> 10.10	Preliminary work		2016	NA
NOTES	Total (Producing + NDRC Approved + Possible	Projects)	13.10	_			

2 July 2014 Chemicals China's Coal to Olefins Industry

No information on shareholding structure has been disclosed
 No information on project owner(s) has been disclosed

Source: Asiachem, ICIS, NDRC, Company specific websites, Deutsche Bank



Project     Company Name     Dutput (min tpa)     Status (min tpa)     Methanol (min tpa)     Est delivery (min tpa)       Producing:     Shenhua Kingxia MTP project (Phase I)     Shenhua Group : 51% (min tpa)     Ningxia 0.50     In operation     1.50     2010       Datang Duolun MTP project     Datang International Power (991 HK) : 60% (China Datang Group : 40%     Inner Mongolia     0.46     In operation     1.38     2011       Sinopec Zhongyuan S-MTO project     Sinope (385 HK) : 93.51%     Henan     0.20     In operation     0.60     2011       Wison MTO project     Ningkio Heyuan Chemical : 100%     Zhejjang     0.60     In operation     1.80     2013       MDRC Approved :     Wison (2236 HK) : 100%     Manjin     0.30     Trial Operation     0.90     2014       Gansu Huating Origict     Gansu Huating 100%     Gansu     0.20     Approved by NDRC     0.60     2014       China Coal Energy (1388 HK) : 75%     Zhejjang     0.60     Approved by NDRC     0.80     2014       China Coal Energy (1388 HK) : 75%     Zhejjang     0.60     Approved by NDRC     0.80     2014       China Coal Energy (1388 HK) : 75%     Zhejjang     0.60     Approved by NDRC     1.80     2015       Sinopec (386 HK): 50%; remaining parties: 50%     Liner Mongolia     0.60     Approved	APPENDIX 2: China's Methanol-to-	-Olefins (MTO) projects:						
Producing:       Shenhua Ningxia MTP project (Phase I)       Shenhua Group : 51%       Ningxia provincial government : 49%       0.50       In operation       1.50       2010         Datang Duolun MTP project       Datang International Power (991 HK) : 60%       Inner Mongolia       0.46       In operation       1.38       2011         Sinopec Zhongyuan S-MTO project       Sinopec (386 HK) : 93.51%       Henan       0.20       In operation       0.60       2011         Mingbo Heyuan MTO project       Ningbo Heyuan Chemical : 100%       Zhejjang       0.60       In operation       1.80       2013         NDRC Approved:       Wison (2236 HK) : 100%       Nanjin       0.30       Trial Operation       0.90       2014         Gansu Huating olefin MTP project       Gansu Huating : 100%       Gansu       0.20       Approved by NDRC       2.07       2014         Shandong Yangmei Hengtong MTO project       Sanjang Fine Chemical (2198 HK) : 75%       Zhejjang Xingxing : 25%       Zhejjang Xingxing : 25%       Zhejjang Xingxing : 25%       Zhejjang Xingxing : 25%       2014       Approved by NDRC       2.07       2014         China Coal Mengd IMTO project       Yuanxing Energy (000683 CH) : 25%       Inner Mongolia       0.60       Approved by NDRC       2.07       2014         Sinopee Lenan S-MTO project       Xuzhou H	Project	Company Name	Location	Output (min tpa)	Status	Methanol consumption (mln tpa)	Est delivery date	Capex (RMBbn)
Shenhua Ningxia MTP project (Phase I)       Shenhua Group: 51%       Ningxia       0.50       In operation       1.50       2010         Datang Duolun MTP project       Datang international Power (991 HK): 60%       Inner Mongolia       0.46       In operation       1.33       2011         Sinopec Zhongyuan S-MTO project       Sinopec (386 HK): 93.51%       Henan       0.20       In operation       0.60       2011         Ningbo Heyuan MTO project       Ningbo Heyuan Chemical: 100%       Zhejiang       0.60       In operation       0.80       2013         NDRC Approved:       Wison (2236 HK): 100%       Nanjin       0.30       Trial Operation       0.90       2014         Gansu Huating olefin MTP project       Gansu Huating: 100%       Gansu       0.20       Approved by NDRC       0.60       2014         Zhejiang XingXing MTO project       Yanguan Coal Mining (600348 CH): 100%       Linyi       0.30       Approved by NDRC       0.60       2014         Shandong Yangmei Hengtong MTO project       Yanaxing Energy (100883 CH): 25%       Inner Mongolia       0.60       Approved by NDRC       0.60       2014         China Coal Energy (1898 HK): 75%       Inner Mongolia       0.60       Approved by NDRC       0.60       Approved by NDRC       0.60       Approved by NDRC       0.60	Producing:							
Datang Duolun MTP projectDatang International Power (991 HK) : 60% China Datang Group : 40%Inner Mongolia0.46In operation1.382011Sinopec Zhongyuan S-MTO projectSinopec (386 HK) : 93.51% Henan provincial government : 6.49%Henan0.20In operation0.602011Ningbo Heyuan MTO projectNingbo Heyuan Chemical : 100%Zhejiang0.60In operation1.802013NDRC Approved:Wison MTO projectWison (225 HK) : 100%Nanjin0.30Trial Operation0.902014Gansu Huating olefin MTP projectGansu Huating : 100%Gansu0.20Approved by NDRC0.602014Zhejiang XingXing MTO projectSanjiang Fine Chemical (2198 HK) : 75% Zhejiang XingXing XTO projectYangguan Coal Mining (600348 CH) : 100%Linyi0.30Approved by NDRC0.892014China Coal Mengda MTO projectYangguan Coal Mining (600348 CH) : 100%Linyi0.30Approved by NDRC1.802015Gansu Huijin MTO projectHuahing Huijin : 100%Gansu0.60Approved by NDRC1.802015Gansu Huijin MTO projectHuahing Huijin : 100%Gansu0.60Approved by NDRC1.80NASinopec (386 HK): 50%; remaining parties : 50%Guizhou0.60Approved by NDRC1.80NASinopec (386 HK): 50%; remaining parties : 50%Guizhou0.60Approved by NDRC1.80NASinopec (386 HK): 50%; remaining parties : 50%Guizhou0.60Approved by NDRC1.80NA <tr<< td=""><td>Shenhua Ningxia MTP project (Phase I)</td><td>Shenhua Group : 51% Ningxia provincial government : 49%</td><td>Ningxia</td><td>0.50</td><td>In operation</td><td>1.50</td><td>2010</td><td>17.0</td></tr<<>	Shenhua Ningxia MTP project (Phase I)	Shenhua Group : 51% Ningxia provincial government : 49%	Ningxia	0.50	In operation	1.50	2010	17.0
Sinopec Zhongyuan S-MTO project Ningbo Heyuan MTO project Ningbo Heyuan Chemical : 100% Ningbo Heyuan MTO project Ningbo Heyuan Chemical : 100% Nanjin Chaproved: Wison (2236 HK) : 100% Nanjin Chana Gansu Huating : 100% Sanjiang Fine Chemical (2198 HK) : 75% Zhejiang Xingxing : 25% Zhejiang : 25% Zhejiang Xingxing : 25% Zhejiang Xi	Datang Duolun MTP project	Datang International Power (991 HK) : 60% China Datang Group : 40%	Inner Mongolia	0.46	In operation	1.38	2011	NA
Ningbo Heyuan MTO project       Ningbo Heyuan Chemical : 100%       Zhejiang       0.60       In operation       1.80       2013         NDRC Approved:       Wison (2236 HK) : 100%       Nanjin       0.30       Trial Operation       0.90       2014         Gansu Huating olefin MTP project       Gansu Huating : 100%       Gansu       0.20       Approved by NDRC       0.60       2014         Zhejiang Xingxing MTO project       Yanguan Coal Mining (600348 CH) : 107%       Zhejiang       0.60       Approved by NDRC       2.07       2014         Shandong Yangmei Hengtong MTO project       Yanguan Coal Mining (600348 CH) : 100%       Linyi       0.30       Approved by NDRC       1.80       2015         Gansu Huljin MTO project       China Coal Energy (1298 HK) : 75%       Inner Mongolia       0.60       Approved by NDRC       1.80       2015         Gansu Huljin MTO project       Yuanxing Energy (100683 CH) : 25%       Gansu       0.70       Approved by NDRC       1.80       NA         Sinope C (186 HK): 50%; remaining parties : 50%       Jiangsu       0.60       Approved by NDRC       1.80       NA         Sinopec C (186 HK): 50%; remaining parties : 50%       Henan       0.60       Approved by NDRC       1.80       NA         Sinopec C (186 HK): 50%; remaining parties : 50%       Henan </td <td>Sinopec Zhongyuan S-MTO project</td> <td>Sinopec (386 HK) : 93.51% Henan provincial government : 6.49%</td> <td>Henan</td> <td>0.20</td> <td>In operation</td> <td>0.60</td> <td>2011</td> <td>NA</td>	Sinopec Zhongyuan S-MTO project	Sinopec (386 HK) : 93.51% Henan provincial government : 6.49%	Henan	0.20	In operation	0.60	2011	NA
NDRC Approved:Wison (2236 HK): 100%Nanjin0.30Trial Operation0.902014Gansu Huating olefin MTP projectGansu Huating : 100%Gansu0.20Approved by NDRC0.602014Zhejiang XingXing MTO projectSanjiang Fine Chemical (2198 HK) : 75% Zhejiang Xingxing : 25%Zhejiang0.60Approved by NDRC2.072014Shandong Yangmei Hengtong MTO projectYangquan Coal Mining (600348 CH) : 100%Linyi0.30Approved by NDRC0.892014China Coal Mengda MTO projectChina Coal Energy (1898 HK) : 75% Yuanxing Energy (000683 CH) : 25%Inner Mongolia0.60Approved by NDRC1.802015Gansu Huijin MTO projectHuahing Huijin : 100%Gansu0.70Approved by NDRC2.10NASinopec Guizhou S-MTO projectXuzhou Haitian Chemicals : 100%Jiangsu0.60Approved by NDRC1.80NASinopec Guizhou S-MTO projectSinopec (386 HK): 50%; remaining parties : 50%Guizhou0.60Approved by NDRC1.80NASinopec Guizhou S-MTO projectSinopec (386 HK): 50%; remaining parties : 50%Anhui0.60Approved by NDRC1.80NASinopec Cahnhui S-MTO projectShanxi Coking Co Ltd (600740 CH) : 100%Shanxi0.60Approved by NDRC1.80NASinopec Cal MTO projectJiutai Group : 100%Inner Mongolia0.60Preliminary work1.802014Jiutai MTO projectShanxi Coking Co Ltd (600740 CH) : 100%Shanxii0.60Preliminary work1.80 <td>Ningbo Heyuan MTO project</td> <td>Ningbo Heyuan Chemical : 100%</td> <td>Zhejiang</td> <td>0.60 1.76</td> <td>In operation</td> <td>1.80</td> <td>2013</td> <td>NA</td>	Ningbo Heyuan MTO project	Ningbo Heyuan Chemical : 100%	Zhejiang	0.60 1.76	In operation	1.80	2013	NA
Wison MTO projectWison (2236 HK) : 100%Nanjin0.30Trial Operation0.902014Gansu Huating olefin MTP projectGansu Huating : 100%Gansu0.20Approved by NDRC0.602014Zhejiang XingXing MTO projectSanjiang Fine Chemical (2198 HK) : 75% Zhejiang Xingxing : 25%Zhejiang0.60Approved by NDRC2.072014Shandong Yangmei Hengtong MTO projectYangquan Coal Mining (600348 CH) : 100%Linyi0.30Approved by NDRC0.892014China Coal Energy (1898 HK) : 75% Yuanxing Energy (000683 CH) : 25%Inner Mongolia0.60Approved by NDRC1.802015Sinopec Guidous SMTO projectHuahing Huijin : 100%Gansu0.70Approved by NDRC2.10NAXuzhou Haitian Chemicals : 100%Jiangsu0.60Approved by NDRC1.80NASinopec Guidou S-MTO projectSinopec Gi366 HK): 50%; remaining parties : 50%Guizhou0.60Approved by NDRC1.80NASinopec Ci366 HK): 50%; remaining parties : 50%Henan0.60Approved by NDRC1.80NASinopec Ci386 HK): 50%; remaining parties : 50%Anhui0.60Approved by NDRC1.80NASinopec Ci386 HK): 50%; remaining parties : 50%Anhui0.60Approved by NDRC1.80NASinopec Ci386 HK): 50%; remaining parties : 50%Anhui0.60Approved by NDRC1.80NAJiutai Group : 100%Kining0.60Preliminary work1.802014Jiutai MTO projectSha	NDRC Approved:							
Gansu Huating olefin MTP projectGansu Huating : 100%Gansu0.20Approved by NDRC0.602014Zhejiang XingXing MTO projectSanjiang Fine Chemical (2198 HK) : 75% Zhejiang Xingxing : 25%Zhejiang0.60Approved by NDRC2.072014Shandong Yangmei Hengtong MTO projectYangquan Coal Mining (600348 CH) : 100% Yuanxing Energy (1898 HK) : 75% Yuanxing Energy (000683 CH) : 25%Inner Mongolia0.60Approved by NDRC2.072014Gansu Huijin MTO projectChina Coal Energy (1898 HK) : 75% Yuanxing Energy (000683 CH) : 25%Inner Mongolia0.60Approved by NDRC1.802015Gansu Huijin MTO projectHuahing Huijin : 100% Yuanxing Energy (000683 CH) : 25%Gansu0.70Approved by NDRC2.10NASinopec Guizhou S-MTO projectSinopec (386 HK): 50%; remaining parties : 50% Sinopec (386 HK): 50%; remaining parties : 50% Sinopec (386 HK): 50%; remaining parties : 50% AnhuiGansu0.60Approved by NDRC1.80NASinopec Anhui S-MTO projectSinopec (386 HK): 50%; remaining parties : 50% Jiutai MTO projectAnhui0.60Approved by NDRC1.80NASinopec Cathou S-MTO projectShanxi Coking Co Ltd (600740 CH) : 100% Jiutai MTO projectShanxi Coking Co Ltd (600740 CH) : 100% ShanxiShanxi0.60Preliminary work1.802014Jiutai MTO projectJiutai Group : 100% Ningxia provincial government : 49% Guanghui MTO projectShanxi Coking Co Ltd (600256 CH) : 100% Ningxia provincial government : 49%Sinopec CHas been suspended3.002015<	Wison MTO project	Wison (2236 HK) : 100%	Nanjin	0.30	Trial Operation	0.90	2014	NA
Zhejiang XingXing MTO projectSanjiang Fine Chemical (2198 HK): 75% Zhejiang Xingxing: 25%Zhejiang0.60Approved by NDRC2.072014Shandong Yangmei Hengtong MTO projectYangquan Coal Mining (600348 CH): 100%Linyi0.30Approved by NDRC0.892014China Coal Mengda MTO projectChina Coal Energy (1898 HK): 75% Yuanxing Energy (000638 CH): 25%Inner Mongolia0.60Approved by NDRC1.802015Gansu Huijin MTO projectHuahing Huijin: 100% Yuanxing Energy (000634 CH): 25%Gansu0.70Approved by NDRC2.10NAXuzhou Haitian MTP projectXuzhou Haitian Chemicals: 100% Sinopec Guizhou S-MTO projectSinopec (386 HK): 50%; remaining parties: 50% Sinopec (386 HK): 50%; remaining parties: 50% HenanGansu0.60Approved by NDRC1.80NASinopec Anhui S-MTO projectSinopec (386 HK): 50%; remaining parties: 50% Sinopec (386 HK): 50%; remaining parties: 50% HenanHenan0.60Approved by NDRC1.80NAMing Yio ProjectShanxi Coking Co Ltd (600740 CH): 100% Jiutai Group: 100%Shanxi0.60Preliminary work1.802014Jiutai MTO projectShanxi Coking Co Ltd (600740 CH): 100% Ningxia provincial government: 49%Ningxia0.50Preliminary work1.802014Guanghui MTO projectShanxi Coking Co Ltd (600740 CH): 100% Ningxia provincial government: 49%Ningxia0.50Preliminary work1.802014Guanghui MTO projectShanxi Coking Co Ltd (600740 CH): 100% Ningxia provincial government: 49%Ningxia	Gansu Huating olefin MTP project	Gansu Huating : 100%	Gansu	0.20	Approved by NDRC	0.60	2014	NA
Zhejiang Xingxing : 25%Zhejiang0.60Approved by NDRC2.072014Shandong Yangmei Hengtong MTO projectYangquan Coal Mining (600348 CH) : 100%Linyi0.30Approved by NDRC0.892014China Coal Mengda MTO projectChina Coal Energy (1898 HK) : 75% Yuanxing Energy (000683 CH) : 25%Inner Mongolia0.60Approved by NDRC1.802015Gansu Huijin MTO projectHuahing Huijin : 100%Gansu0.70Approved by NDRC2.10NAXuzhou Haitian MTP projectXuzhou Haitian Chemicals : 100%Jiangsu0.60Approved by NDRC1.80NASinopec Guizhou S-MTO projectSinopec (386 HK): 50%; remaining parties : 50%Guizhou0.60Approved by NDRC1.80NASinopec Canhui S-MTO projectSinopec (386 HK): 50%; remaining parties : 50%Anhui0.60Approved by NDRC1.80NASinopec Canhui S-MTO projectShanxi Coking Co Ltd (600740 CH) : 100%Nahui0.60Approved by NDRC1.80NASinopec CashJiutai MTO projectShanxi Coking Co Ltd (600740 CH) : 100%Shanxi0.60Preliminary work1.802014Jiutai MTO projectShanxi Coking Co Ltd (600740 CH) : 100%Shanxi0.60Preliminary work1.802014Jiutai MTO projectShanxi Coking Co Ltd (600740 CH) : 100%Shanxi0.60Preliminary work1.802014Jiutai MTO projectShanxi Coking Co Ltd (600740 CH) : 100%Shanxi0.60Preliminary work1.802014Jiu	Zhejiang XingXing MTO project	Sanjiang Fine Chemical (2198 HK) : 75%						
Shandong Yangmei Hengtong MTO projectYangquan Coal Mining (600348 CH) : 100%Linyi0.30Approved by NDRC0.892014China Coal Energy (1898 HK) : 75% Yuanxing Energy (000683 CH) : 25%Inner Mongolia0.60Approved by NDRC1.802015Gansu Huijin MTO projectHuahing Huijin : 100%Gansu0.70Approved by NDRC2.10NAXuzhou Haitian MTP projectXuzhou Haitian Chemicals : 100%Jiangsu0.60Approved by NDRC1.80NASinopec Guizhou S-MTO projectSinopec (386 HK): 50%; remaining parties : 50%Guizhou0.60Approved by NDRC1.80NASinopec Guizhou S-MTO projectSinopec (386 HK): 50%; remaining parties : 50%Guizhou0.60Approved by NDRC1.80NASinopec Anhui S-MTO projectSinopec (386 HK): 50%; remaining parties : 50%Henan0.60Approved by NDRC1.80NAJinopec IJinopec (386 HK): 50%; remaining parties : 50%Anhui0.60Approved by NDRC1.80NAJinopec IJinopec (386 HK): 50%; remaining parties : 50%Anhui0.60Approved by NDRC1.80NAJinopec IJintai Group : 100%Inner Mongolia0.60Preliminary work1.802014Jintai MTO projectShanxi Coking Co Ltd (600740 CH) : 100%Shanxi0.60Preliminary work1.802014Jintai Group : 100%Kining0.60Preliminary work1.8020142014Shenhua Ningxia MTP project (Phase II)Shenhua Group : 51%Ni		Zhejiang Xingxing : 25%	Zhejiang	0.60	Approved by NDRC	2.07	2014	NA
China Coal Mengda MTO projectChina Coal Energy (1898 HK) : 75% Yuanxing Energy (000683 CH) : 25%Inner Mongolia0.60Approved by NDRC1.802015Gansu Huijin MTO projectHuahing Huijin : 100%Gansu0.70Approved by NDRC2.10NAXuzhou Haitian MTP projectXuzhou Haitian Chemicals : 100%Jiangsu0.60Approved by NDRC1.80NASinopec Guizhou S-MTO projectSinopec (386 HK): 50%; remaining parties : 50%Guizhou0.60Approved by NDRC1.80NASinopec Henan S-MTO projectSinopec (386 HK): 50%; remaining parties : 50%Guizhou0.60Approved by NDRC1.80NASinopec Cale China Coking Co Ltd (600740 CH) : 100%Shanxi0.60Approved by NDRC1.80NAPossible projectsShanxi Coking MTO projectJiutai Group : 100%Shanxi0.60Preliminary work1.802014Jutai MTO projectJiutai Group : 100%Shanxi0.60Preliminary work1.802014Qinghai Damei Coal MTO projectWestern Mining : 100%Xining0.60Preliminary work1.802014Guanghui MTO projectShenhua Group : 51%Ningxia0.50Preliminary work1.802014Guanghui MTO projectGuanghui Group (600256 CH) : 100%Xinjiang0.60Preliminary work1.50NAShenhua Ningxia provincial government : 49%Sinopec (100%Xinjiang0.50Preliminary work1.50NAShenhua Group (Gouz56 CH) : 100%Xinjiang </td <td>Shandong Yangmei Hengtong MTO project</td> <td>Yangquan Coal Mining (600348 CH) : 100%</td> <td>Linyi</td> <td>0.30</td> <td>Approved by NDRC</td> <td>0.89</td> <td>2014</td> <td>NA</td>	Shandong Yangmei Hengtong MTO project	Yangquan Coal Mining (600348 CH) : 100%	Linyi	0.30	Approved by NDRC	0.89	2014	NA
Gansu Huijin MTO projectHuahing Huijin : 100%Gansu0.70Approved by NDRC2.10NAXuzhou Haitian MTP projectXuzhou Haitian Chemicals : 100%Jiangsu0.60Approved by NDRC1.80NASinopec Guizhou S-MTO projectSinopec (386 HK): 50%; remaining parties : 50%Guizhou0.60Approved by NDRC1.80NASinopec Anhui S-MTO projectSinopec (386 HK): 50%; remaining parties : 50%Henan0.60Approved by NDRC1.80NASinopec Anhui S-MTO projectSinopec (386 HK): 50%; remaining parties : 50%Anhui0.60Approved by NDRC1.80NASinopec Calle ProjectsSinopec (386 HK): 50%; remaining parties : 50%Anhui0.60Approved by NDRC1.80NAJiutai Group : 100%Inner Mongolia0.60Preliminary work1.802014Jiutai MTO projectJiutai Group : 100%Kining0.60Preliminary work1.802014Jiutai MTO projectWestern Mining : 100%Xining0.60Preliminary work1.802014Guanghui MTO projectWestern Mining : 100%Xining0.50Preliminary work1.802016Shenhua Qinghai Group (600256 CH) : 100%Xiniga0.50Preliminary work1.802016Guanghui MTO projectGuanghui Group (600256 CH) : 100%Xinjiang1.00Project has been suspended3.0020153.30Singei Group (600256 CH) : 100%Xinjiang1.00Project has been suspended3.002015	China Coal Mengda MTO project	China Coal Energy (1898 HK) : 75% Yuanxing Energy (000683 CH) : 25%	Inner Mongolia	0.60	Approved by NDRC	1.80	2015	NA
Xuzhou Haitian MTP project       Xuzhou Haitian Chemicals : 100%       Jiangsu       0.60       Approved by NDRC       1.80       NA         Sinopec Guizhou S-MTO project       Sinopec (386 HK): 50%; remaining parties : 50%       Guizhou       0.60       Approved by NDRC       1.80       NA         Sinopec Guizhou S-MTO project       Sinopec (386 HK): 50%; remaining parties : 50%       Henan       0.60       Approved by NDRC       1.80       NA         Sinopec Anhui S-MTO project       Sinopec (386 HK): 50%; remaining parties : 50%       Henan       0.60       Approved by NDRC       1.80       NA         Sinopec Anhui S-MTO project       Sinopec (386 HK): 50%; remaining parties : 50%       Anhui       0.60       Approved by NDRC       1.80       NA         Possible projects       Sinopec (386 HK): 50%; remaining parties : 50%       Anhui       0.60       Approved by NDRC       1.80       NA         Jiutai Group : 100%       Manxi       0.60       Preliminary work       1.80       2014         Jiutai MTO project       Jiutai Group : 100%       Inner Mongolia       0.60       Preliminary work       1.80       2014         Qinghai Damei Coal MTO project       Western Mining : 100%       Xining       0.50       Preliminary work       1.80       2016         Shenhua Ningxia MTP project (P	Gansu Huijin MTO project	Huahing Huijin : 100%	Gansu	0.70	Approved by NDRC	2.10	NA	NA
Sinopec Guizhou S-MTO project Sinopec (386 HK): 50%; remaining parties : 50% Guizhou Sinopec (386 HK): 50%; remaining parties : 50% Henan Sinopec (386 HK): 50%; remaining parties : 50% Anhui Sinopec (386 HK): 50%; remaining parties : 50% Anhui O.60 Approved by NDRC Approved b	Xuzhou Haitian MTP project	Xuzhou Haitian Chemicals : 100%	Jiangsu	0.60	Approved by NDRC	1.80	NA	NA
Sinopec Henan S-MTO project Sinopec (386 HK): 50%; remaining parties : 50% Henan 0.60 Approved by NDRC 1.80 NA Sinopec (386 HK): 50%; remaining parties : 50% Anhui 0.60 Approved by NDRC 1.80 NA 4.50 Possible projects Shanxi Coking Co Ltd (600740 CH) : 100% Shanxi 0.60 Preliminary work 1.80 2014 Jiutai Group : 100% Inner Mongolia 0.60 Preliminary work 1.80 2014 Qinghai Damei Coal MTO project Western Mining : 100% Xining 0.60 Preliminary work 1.80 2014 Shenhua Ningxia MTP project (Phase II) Shenhua Group : 51% Ningxia 0.50 Preliminary work 1.50 NA Guanghui MTO project Guanghui Group (600256 CH) : 100% Xinjiang 1.00 Project has been suspended 3.00 2015 Guanghui MTO project 0.00 Project No Project No Project No Project has been suspended 3.00 2015 Guanghui MTO project 0.00 Project No Project No Project has been suspended 3.00 2015 Shenhua Ningxia Droup (600256 CH) : 100% Xinjiang 1.00 Project has been suspended 3.00 2015	Sinopec Guizhou S-MTO project	Sinopec (386 HK): 50%; remaining parties : 50%	Guizhou	0.60	Approved by NDRC	1.80	NA	NA
Sinopec Anhui S-MTO project Sinopec (386 HK): 50%; remaining parties : 50% Anhui 0.60 Approved by NDRC 1.80 NA Possible projects Shanxi Coking Co Ltd (600740 CH) : 100% Shanxi 0.60 Preliminary work 1.80 2014 Jiutai Group : 100% Inner Mongolia 0.60 Preliminary work 1.80 2014 Qinghai Damei Coal MTO project Western Mining : 100% Xining 0.60 Preliminary work 1.80 2016 Shenhua Ningxia MTP project (Phase II) Shenhua Group : 51% Ningxia 0.50 Preliminary work 1.50 NA Ningxia provincial government : 49% Guanghui MTO project Guanghui Group (600256 CH) : 100% Xinjiang 1.00 Project has been suspended 3.00 2015	Sinopec Henan S-MTO project	Sinopec (386 HK): 50%; remaining parties : 50%	Henan	0.60	Approved by NDRC	1.80	NA	NA
4.50         Possible projects         Shanxi Coking MTO project       Shanxi Coking Co Ltd (600740 CH) : 100%       Shanxi       0.60       Preliminary work       1.80       2014         Jiutai MTO project       Jiutai Group : 100%       Inner Mongolia       0.60       Preliminary work       1.80       2014         Qinghai Damei Coal MTO project       Western Mining : 100%       Xining       0.60       Preliminary work       1.80       2016         Shenhua Ningxia MTP project (Phase II)       Shenhua Group : 51%       Ningxia       0.50       Preliminary work       1.50       NA         Guanghui MTO project       Guanghui Group (600256 CH) : 100%       Xinjiang       1.00       Project has been suspended       3.00       2015	Sinopec Anhui S-MTO project	Sinopec (386 HK): 50%; remaining parties : 50%	Anhui	0.60	Approved by NDRC	1.80	NA	NA
Possible projects         Shanxi Coking MTO project       Shanxi Coking Co Ltd (600740 CH) : 100%       Shanxi       0.60       Preliminary work       1.80       2014         Jiutai MTO project       Jiutai Group : 100%       Inner Mongolia       0.60       Preliminary work       1.80       2014         Qinghai Damei Coal MTO project       Western Mining : 100%       Xining       0.60       Preliminary work       1.80       2016         Shenhua Ningxia MTP project (Phase II)       Shenhua Group : 51%       Ningxia       0.50       Preliminary work       1.50       NA         Guanghui MTO project       Guanghui Group (600256 CH) : 100%       Xinjiang       1.00       Project has been suspended       3.00       2015				4.50				
Shanxi Coking MTO project       Shanxi Coking Co Ltd (600740 CH) : 100%       Shanxi       0.60       Preliminary work       1.80       2014         Jiutai MTO project       Jiutai Group : 100%       Inner Mongolia       0.60       Preliminary work       1.80       2014         Qinghai Damei Coal MTO project       Western Mining : 100%       Xining       0.60       Preliminary work       1.80       2016         Shenhua Ningxia MTP project (Phase II)       Shenhua Group : 51%       Ningxia       0.50       Preliminary work       1.50       NA         Guanghui MTO project       Guanghui Group (600256 CH) : 100%       Xinjiang       1.00       Project has been suspended       3.00       2015	Possible projects							
Jiutai MTO project       Jiutai Group : 100%       Inner Mongolia       0.60       Preliminary work       1.80       2014         Qinghai Damei Coal MTO project       Western Mining : 100%       Xining       0.60       Preliminary work       1.80       2016         Shenhua Ningxia MTP project (Phase II)       Shenhua Group : 51%       Ningxia       0.50       Preliminary work       1.50       NA         Mingxia provincial government : 49%       Ningxia       0.50       Project has been suspended       3.00       2015         Guanghui MTO project       Guanghui Group (600256 CH) : 100%       Xinjiang       1.00       Project has been suspended       3.00       2015	Shanxi Coking MTO project		Shanxi	0.60	Preliminary work	1.80	2014	NA
Qinghai Damei Coal MTO project       Western Mining : 100%       Xining       0.60       Preliminary work       1.80       2016         Shenhua Ningxia MTP project (Phase II)       Shenhua Group : 51%       Ningxia       0.50       Preliminary work       1.50       NA         Ningxia provincial government : 49%       Ningxia provincial government : 49%       Xinjiang       1.00       Project has been suspended       3.00       2015         Guanghui MTO project       Guanghui Group (600256 CH) : 100%       Xinjiang       1.00       Project has been suspended       3.00       2015	Jiutai MTO project	Jiutai Group : 100%	Inner Mongolia	0.60	Preliminary work	1.80	2014	NA
Shenhua Ningxia MTP project (Phase II)       Shenhua Group : 51%       Ningxia       0.50       Preliminary work       1.50       NA         Ningxia provincial government : 49%       Singxia provincial government : 49%       Xinjiang       1.00       Project has been suspended       3.00       2015         Subscription       Singxia provincial government in the pro	Qinghai Damei Coal MTO project	Western Mining : 100%	Xining	0.60	Preliminary work	1.80	2016	NA
Guanghui MTO project       Guanghui Group (600256 CH) : 100%       Xinjiang       1.00       Project has been suspended       3.00       2015         3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30       3.30<	Shenhua Ningxia MTP project (Phase II)	Shenhua Group : 51% Ningxia provincial government : 49%	Ningxia	0.50	Preliminary work	1.50	NA	NA
3.30	Guanghui MTO project	Guanghui Group (600256 CH) : 100%	Xinjiang	1.00	Project has been suspended	3.00	2015	NA
				3.30				
Total (Producing + NDRC Approved + Possible Projects) 9.56		Total (Producing + NDRC Approved + Possible P	rojects)	9.56	_			

Source: Asiachem, ICIS, NDRC, company website, Deutsche Bank

# APPENDIX 3: China's Coal-to-syngas projects

Project	Company Name	Location	Output	Status	Coal consumption	Est delivery date	Capex (RMBbn)
p			(bcm)		(min tpa)		
Producing:	- Vinijang Qinghua	Vinijang	1 38	In operation		2013	٩
Qingnua coal-to-gas project pilase i	Allijidilg Qiligilua Datang (001 HK)	Anglang	4.00	NDPC's preliminary approval	12.0	2013	, 23
Datang coal-to-gas project	Datang (351 my	Inner wongona _	5.38		12.0	2014	23
NDRC Preliminary Approval:	_						
Qinghua coal-to-gas project phase II/III	Xinjiang Qinghua	Xinjiang	4.13	NDRC's preliminary approval		2014-17	19
Datang coal-to-gas project	Datang (991 HK)	Liaoning	4.00	NDRC's preliminary approval		2014	25
Huineng coal-to-gas project	Huineng	Inner Mongolia	1.60	NDRC's preliminary approval		NA	30
CPI coal-to-gas project	СРІ	Xinjiang	6.00	NDRC's preliminary approval		2017/18	48
Shandong Xinwen coal-to-gas project	Shandong Xinwen Mining Corp	Xinjiang	4.00	NDRC's preliminary approval		2017/18	27
Guodian coal-to-gas project	Guodian (600795 CH)	Inner Montolia	4.00	NDRC's preliminary approval		2017/18	33
CNOOC coal-to-gas project	CNOOC Group	Shanxi	4.00	NDRC's preliminary approval	15.0	2017/18	25
Inner Mongolia Xinmeng Energy coal-to-gas project	Xinmeng Energy Corp	Inner Mongolia	4.00	NDRC's preliminary approval		2017/18	24
Beijing Enterprise coal-to-gas project	Beijing Enterprise (392 HK)	Inner Mongolia	4.00	NDRC's preliminary approval		2017/18	27
Hebei Construction Inv. coal-to-gas project	Hebei Construction Investment	Inner Mongolia	4.00	NDRC's preliminary approval		2017/18	27
CNOOC New Energy coal-to-gas project	CNOOC Group	Inner Mongolia	4.00	NDRC's preliminary approval		2017/18	27
Xinjiang Zhundong Coal Ingegrated project	Sinopec Group, Huaneng, Guanghui (600256 CH	) Xinjiang	30.00	NDRC's preliminary approval		2017/18	183
			73.73				
Possible projects							
Wanneng Guotou Xinji coal-to-gas project	Wanneng Group, Guotou Xinji	Anhui	4.00	Under construction	13.0	NA	NA
Huadian coal-to-gas project	Huadian Group	Inner Mongolia	4.00	Preliminary work	13.0	NA	NA
Huadian Xinjiang coal-to-gas project	Huadian Xinjiang Elec. Co Ltd	Xinjiang	6.00	Preliminary work	19.5	NA	NA
Guodian Pingmei Nileke coal-to-gas project	Guodian (600795 CH), Pingzhuang Coal, Nileke	Xinjiang	4.00	Preliminary work	13.0	NA	NA
CPI coal-to-gas project	China Power Investment	Xinjiang	6.00	Preliminary work	19.5	NA	NA
Shenhua coal-to-gas project	Shenhua Group	Inner Mongolia	2.00	Preliminary work	7.5	NA	14
China Coal coal-to-gas project	China Coal Group (1898 HK)	Inner Mongolia	2.00	Preliminary work	6.5	NA	NA
China Coal Xinjiang coal-to-gas project	China Coal Xinjiang Co Ltd	Xinjiang	4.00	Preliminary work	13.0	NA	NA
Yankuang Xinjiang Nenghua coal-to-gas project	Yankuang Xinjiang Nenghua Co Ltd	Xinjiang	4.00	Preliminary work	13.0	NA	NA
Kailuan Energy coal-to-gas project	Kailuan Energy Inv. Corp	Xinjiang	4.00	Preliminary work	13.0	NA	NA
Changji Shengxin coal-to-gas project	Changji Shengxin Co Ltd	Xinjiang	1.60	Preliminary work	5.2	NA	NA
Tebian Elec Xinjiang Energy Huaidong coal-to-gas	Tebian Diangong Xinjiang Energy	Xinjiang	4.00	Preliminary work	13.0	NA	NA
Xinjiang Huahong Mining coal-to-gas project	Xinjiang Huahong Mining	Xinjiang	2.00	Preliminary work	6.5	NA	NA
Xukuang Xinjiang coal-to-gas project	Xukuang Xinjiang Corp	Xinjiang	4.00	Preliminary work	13.0	NA	NA
Hami Ziguang Mining coal-to-gas project	Hami Ziguang Corp	Xinjiang	0.80	Preliminary work	2.6	NA	NA
Lu'an Xinjiang coal-to-gas project	Lu'an Xinjiang Coal Chemicals	Xinjiang	4.00	Preliminary work	13.0	NA	NA
Shendong Tianlong coal-to-gas project	Shendong Tianlong Group Co Ltd	Xinjiang	1.30	Preliminary work	4.2	NA	NA
Sinopec Guizhou coal-to-gas project	Sinopec Guizhou	Guizhou	4.00	Preliminary work	13.0	NA	NA
		-	61.70				
	Total (Producing + NDRC Approved + Possible P	rojects)	140.80	_			

Source: Asiachem, ICIS, NDRC, company website , Deutsche Bank



# APPENDIX 4: Global Methanol capacity – Part 1

(Thousand tons)	2008	2009	2010	2011	2012	2013	2014e	2015e	2016e	2017e	2018e
				NORT	H AMERIC	Α					
Canada				313	470	495	560	560	560	1,310	1,310
Mexico	180	180	180	180	180	180	180	180	180	180	180
United States	980	980	980	860	1,235	1,675	2,584	3,795	7,230	12,370	12,370
Total - North America	1,160	1,160	1,160	1,353	1,885	2,350	3,324	4,535	7,970	13,860	13,860
Natural Gas	965	965	965	1,158	1,690	2,155	3,129	4,340	7,775	12,385	12,385
Coal	195	195	195	195	195	195	195	195	195	195	195
Petcoke										1,280	1,280
-	1,160	1,160	1,160	1,353	1,885	2,350	3,324	4,535	7,970	13,860	13,860
				SOUT		<b>A</b>					
Argentina	450	450	450	450	450	450	450	450	450	450	450
Brazil	303	303	303	303	303	353	353	353	353	1,074	1,074
Chile	2,918	2,918	2,078	1,088	1,088	1,088	840	840	840	840	840
Trinidad	6,650	6,650	6,722	6,722	6,722	6,722	6,722	6,722	6,722	7,472	7,722
Venezuela	1,540	1,700	2,050	2,550	2,550	2,550	2,550	2,550	2,550	2,550	2,550
Total - South America	11,861	12,021	11,603	11,113	11,113	11,163	10,915	10,915	10,915	12,386	12,636
Natural gas	11.861	12.021	11.603	11,113	11,113	11,163	10.915	10.915	10.915	12.386	12.636
	11,861	12,021	11,603	11,113	11,113	11,163	10,915	10,915	10,915	12,386	12,636
				WES							
Germany	1,805	1,805	1,675	1,675	1,675	1,675	1,675	1,675	1,675	1,675	1,675
Netherlands	500	365	400	500	500	500	500	500	500	500	500
Norway	900	900	900	900	900	900	900	900	900	900	900
Total - West Europe	3,205	3,070	2,975	3,075	3,075	3,075	3,075	3,075	3,075	3,075	3,075
Natural gas	1.860	1.560	1.430	1.430	1.430	1.430	1.430	1.430	1.430	1.430	1.430
Heavy liquids	1.345	1,345	1,345	1.345	1,345	1,345	1.345	1.345	1.345	1,345	1.345
Bio-feedstock	.,	165	200	300	300	300	300	300	300	300	300
	3,205	3,070	2,975	3,075	3,075	3,075	3,075	3,075	3,075	3,075	3,075
				CENTR		ЪЕ					
Former Yugoslavia	365	365	365	200	200	200	200	200	200	200	200
Romania	440	440	440	200	200	200	200	200	200	200	200
Total - Central Europe	805	805	805	400	400	400	400	400	400	400	400
Natural gas	805	805	805	400	400	400	400	400	400	400	400
	805	805	805	400	400	400	400	400	400	400	400
						FS					
Other CIS & Baltic States	376	376	302	302	302	302	862	862	862	862	862
Russia	3 888	3 728	3 768	3 878	3 858	3 858	3 908	3 958	4 008	4 188	6 368
Total - CIS & Baltic States	4,264	4,104	4,070	4,180	4,160	4,160	4,770	4,820	4,870	5,050	7,230
Natural das	4 179	4 019	3 985	4 095	4 075	4 075	4 685	4 735	4 785	4 965	7 145
	-, , , , 9	7,019	3,303	-,000 85	4,075	7,075 85	-,000 85	-,,,55 85	4,700 85	-,305 85	1,140
I IGAVY UII											65

Source: IHS; Deutsche Bank

# APPENDIX 5: Global methanol capacity – Part 2

(Thousand tops)											
	2008	2009	2010	2011	2012	2013	2014e	2015e	2016e	2017e	2018e
				MIDE	DLE EAST						
Bahrain	425	425	450	450	450	450	450	450	450	450	450
Iran	3,394	4,244	5,044	5,044	5,044	5,044	5,044	5,044	5,044	5,044	5,044
Israel	1 050	1 050	1 700	2 250	2 250	2.250	2.250	2.250	2.250	2.250	2.250
Ontar	1,050	1,050	1,700	2,350	2,350	2,350	2,350	2,350	2,350	2,350	2,350
Qatar Soudi Arabia	6 200	7 180	7 280	7 280	7 280	7 280	7 280	7 280	7 280	7 280	7 280
Total - Middle East	12 059	13 889	15 464	16 114	16 114	16 114	16 154	16 194	16 194	16 194	16 194
Total - Midule East	12,059	13,009	15,464	10,114	10,114	10,114	10,154	10, 194	10,194	10,194	10,194
Natural gas	12.059	13,889	15.464	16,114	16,114	16,114	16,154	16,194	16,194	16,194	16,194
Heavy oil											
	12,059	13,889	15,464	16,114	16,114	16,114	16,154	16,194	16,194	16,194	16,194
				· · ·							
				A	FRICA						
Algeria	110	110	110	110	110	110	110	110	110	110	110
Egypt	24			945	1,260	1,260	1,260	1,260	1,260	1,260	1,260
Libya	660	660	660	660	660	660	660	660	660	660	660
Other Africe	1 150	1 150	1 150	1 150	1 150	1 150	1 150	1 150	1 150	1 150	1 650
South Africa	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,050
Total - Africa	2 084	2 060	2 060	3 005	3 320	3 3 2 0	3 320	3 320	3 3 20	3 320	4 270
	2,004	2,000	2,000	0,000	0,020	0,020	0,020	0,020	0,020	0,020	4,270
Natural gas	2,084	2,060	2,060	3,005	3,320	3,320	3,320	3,320	3,320	3,320	4,270
	2,084	2,060	2,060	3,005	3,320	3,320	3,320	3,320	3,320	3,320	4,270
				INDIAN SU	JECONTIN						
India	416	502	502	502	502	597	667	667	832	832	832
Natural gas	416	502	502	502	502	597	667	667	832	832	832
				NORTH	HEAST AS	A					
China	20,019	26,357	33,039	37,925	42,419	49,389	54,634	58,959	58,959	58,959	58,959
Natural dae	5 832	6 568	7 535	8 380	9 740	10 900	10 900	11 700	11 700	11 700	11 700
	120	120	120	250	250	250	250	250	250	250	250
Coal	12 037	15 963	19 809	23 109	25 159	29 859	34 829	37 079	37 079	37 079	37 079
Coking gas	2.030	3,706	5.575	6,186	7.270	8.380	8.655	9,930	9,930	9,930	9,930
Sound and	20.019	26.357	33.039	37.925	42.419	49.389	54.634	58,959	58,959	58,959	58.959
	,	,	,	,	,	,	,	,	,	,	,
				SOUTH	HEAST AS	A					
Australia	100	100	100	100	100	100	100	100	100	100	100
Indonesia	1,040	760	710	710	710	710	710	710	710	710	710
Malaysia	920	2,520	2,520	2,520	2,520	2,520	2,520	2,520	2,520	2,520	2,520
Myanmar	150	150	150	150	150	150	150	150	150	150	150
New Zealand	611	850	850	850	1,175	1,717	2,200	2,200	2,200	2,200	2,200
Other Southeast Asia		4 280	600	<u> </u>	850	850	6 530	850	850	850	850
Total - SE Asia	2,821	4,380	4,930	5,180	5,505	6,047	6,530	6,530	6,530	6,530	6,530
Natural gas	2,821	4,380	4,930	5,180	5,505	6,047	6,530	6,530	6,530	6,530	6,530
5	2,821	4,380	4,930	5,180	5,505	6,047	6,530	6,530	6,530	6,530	6,530
	10.057	10 76-	10.077	N	ORLD	50 05 ·	50.457	00.00 ·			
Natural gas	42,882	46,769	49,279	51,377	53,889	56,201	58,130	60,231	63,881	70,142	73,522
Heavy oil	1,550	1,550	1,550	1,680	1,680	1,680	1,680	1,680	1,680	1,680	1,680
Coal	12,232	16,158	20,004	23,304	25,354	30,054	35,024	37,274	37,274	37,274	37,274
Coking gas	2,030	3,706	5,575	6,186	7,270	8,380	8,655	9,930	9,930	9,930	9,930
DIU-TEEOSTOCK		165	200	300	300	300	300	300	300	1 280	1 220
TOTAL - World	58 694	68 349	76 608	82 847	88 493	96 615	103 789	109 415	113 065	120 606	123 986
		00,070	,								,

Source: IHS; Deutsche Bank
Unit: Thousand tons	2008	2009	2010	2011	2012	2013	2014e	2015e	2016e	2017e	2018e
			NC	ORTH AME	RICA						
Canada	5,138	5,048	5,048	5,048	5,048	5,048	5,048	5,048	5,048	5,216	5,216
Mexico	1,382	1,382	1,382	1,382	1,382	1,382	1,382	1,632	2,382	2,382	2,382
United States	28,615	27,005	26,555	26,934	26,958	27,579	28,292	29,288	29,380	32,255	35,118
TOTAL - North America	35,135	33,435	32,985	33,364	33,388	34,009	34,722	35,968	36,810	39,853	42,716
Ethane	8,191	8,191	8,191	8,191	8,191	8,205	8,235	8,565	9,315	12,190	15,053
Ethane/Propane	5,329	4,498	4,337	4,580	4,580	5,012	5,141	5,270	5,270	5,270	5,270
EPB (Ethane, Propane, Butane)	1,689	1,609	1,578	1,714	1,726	1,726	1,726	1,766	1,808	1,808	1,808
EPB/Naphtha	10,216	10,248	10,248	10,248	10,490	11,355	11,909	12,179	12,229	12,229	12,229
Naphtha	907	920	920	920	690						
EPB/Naphtha/Gas Oil/Residues	7,914	7,536	7,518	7,518	7,518	7,518	7,518	7,995	7,995	8,163	8,163
Naphtha/Gas Oil/Residues	544	136									
Recovery from FCC/DCC Unit	345	297	193	193	193	193	193	193	193	193	193
	35,135	33,435	32,985	33,364	33,388	34,009	34,722	35,968	36,810	39,853	42,716
			SC		RICA						
Argentina	752	752	752	752	752	752	752	752	752	752	752
Brazil	3,657	3,770	3,820	3,970	3,970	3,970	3,970	3,970	3,970	3,970	3,970
Chile	49	49	49	49	49	49	49	49	49	49	49
Colombia	100	100	100	100	100	100	100	100	100	100	100
Venezuela	600	600	600	600	600	600	600	600	600	600	600
TOTAL - South America	5,158	5,271	5,321	5,471	5,471	5,471	5,471	5,471	5,471	5,471	5,471
Ethane	700	700	700	700	700	700	700	700	700	700	700
Ethane/Propane	1,140	1,140	1,140	1,140	1,140	1,140	1,140	1,140	1,140	1,140	1,140
EPB (Ethane, Propane, Butane)	30	30	30	30	30	30	30	30	30	30	30
EPB/Naphtha	71	71	71	71	71	71	71	71	71	71	71
Naphtha	3,050	3,097	3,097	3,097	3,097	3,097	3,097	3,097	3,097	3,097	3,097
Ethanol Dehydration			50	200	200	200	200	200	200	200	200
Recovery from FCC/DCC Unit	167	233	233	233	233	233	233	233	233	233	233
	5,158	5,271	5,321	5,471	5,471	5,471	5,471	5,471	5,471	5,471	5,471

Source: IHS; Deutsche Bank

#### APPENDIX 7: Global ethylene capacity – Part 2

	2008	2009	2010	2011	2012	2013	2014e	2015e	2016e	2017e	2018e
			V	<b>VEST EUR</b>	OPE						
Austria	500	500	500	500	500	500	500	500	500	500	500
Belgium	2,460	2,460	2,460	2,460	2,460	2,326	2,230	2,230	2,230	2,230	2,230
Finland	380	380	380	380	380	380	380	380	380	380	380
France	3,320	3,080	3,080	3,080	3,080	3,080	3,080	2,995	2,740	2,740	2,740
Germany	5,818	5,943	5,943	5,878	5,683	5,683	5,683	5,683	5,683	5,683	5,683
Italy	2,048	1,925	1,925	1,800	1,675	1,601	1,380	1,380	1,380	1,380	1,380
Netherlands	3,975	3,975	3,975	3,975	3,975	3,975	3,975	3,975	3,975	3,975	3,975
Norway	575	575	575	575	575	575	575	575	575	575	575
Portugal	410	410	410	410	410	410	410	410	410	410	410
Spain	1,560	1,560	1,601	1,622	1,622	1,622	1,622	1,622	1,622	1,622	1,622
Sweden	610	610	610	610	610	610	610	610	610	610	610
Switzerland	30	30	30	30	30	30	30	30	30	30	30
United Kingdom	2,920	2,920	2,880	2,800	2,800	2,800	2,528	2,470	2,470	2,470	2,470
TOTAL - West Europe	24,606	24,368	24,369	24,120	23,800	23,592	23,003	22,860	22,605	22,605	22,605
Ethane	830	830	830	830	830	830	830	830	830	830	830
EPB (Ethane,Propane,Butane)	1,915	1,915	1,915	1,915	1,915	1,915	1,915	1,915	1,915	1,915	1,915
EPB/Naphtha	9,716	9,718	9,718	9,718	9,718	9,584	9,216	9,158	9,158	9,158	9,158
Naphtha	6,375	6,135	6,135	6,135	6,135	6,135	6,135	6,050	5,795	5,795	5,795
EPB/Naphtha/Gas Oil/Residues	3,550	3,550	3,551	3,492	3,492	3,492	3,492	3,492	3,492	3,492	3,492
Naphtha/Gas Oil/Residues	2,175	2,175	2,175	1,985	1,665	1,591	1,370	1,370	1,370	1,370	1,370
Recovery from FCC/DCC Unit	45	45	45	45	45	45	45	45	45	45	45
	24,606	24,368	24,369	24,120	23,800	23,592	23,003	22,860	22,605	22,605	22,605
			CE	NTRAL EL	JROPE						
Bulgaria	150	150									
Czech Republic & Slovakia	764	764	764	764	764	764	764	764	764	764	764
Former Yugoslavia	290	290	290	290	200	200	200	200	200	200	200
Hungary	620	660	660	660	660	660	660	660	660	660	660
Poland	700	700	700	700	700	700	700	700	700	700	700
Romania	200										
TOTAL - Central Europe	2,724	2,564	2,414	2,414	2,324	2,324	2,324	2,324	2,324	2,324	2,324
<b>E</b> 4h = 1 = 2	00	00	00	00							
Eurarie EDB/Manhtha	90	90	90	90							
Er D/Naphtha Naphtha	 550	250	200	200	200	200	200	200	200	200	200
Naphula EPR/Naphtha/Gao Oil/Pasiduca	550	300	∠00 1 464	200	∠00 1.464	200	200	200	200	200	200
Er D/Naphtha/Gas Oll/Residues	1,404	1,404	1,404	1,404	1,404	1,404	1,404	1,404	1,404	1,404	1,404
Naphina/Gas Oll/Residues	2.724	2.564	2.414	2.414	2.324	2.324	2.324	2.324	2.324	2.324	2.324
	2,124	2,007	-, - 1 -	2,717	2,527	2,527	2,024	2,024	2,024	2,027	2,527

Source: IHS; Deutsche Bank



	2008	2009	2010	2011	2012	2013	2014e	2015e	2016e	2017e	2018e
			CIS 8		STATES						
Other CIS & Baltic States	835	585	835	885	885	885	885	885	1,285	1,285	2,085
Russia	2,861	2,861	2,861	3,031	3,092	3,132	3,412	3,652	3,652	3,652	3,802
TOTAL - CIS & Baltic States	3,696	3,446	3,696	3,916	3,977	4,017	4,297	4,537	4,937	4,937	5,887
Ethane	475	475	475	375	415	415	625	835	835	835	1,635
Ethane/Propane									400	400	400
EPB (Ethane, Propane, Butane)	95	95	95	423	465	465	465	465	465	465	465
EPB/Naphtha	1,111	1,111	1,111	1,053	1,032	1,072	1,142	1,172	1,172	1,172	1,172
Naphtha	1,620	1,620	1,620	1,620	1,620	1,620	1,620	1,620	1,620	1,620	1,770
EPB/Naphtha/Gas Oil/Residues	395	145	395	445	445	445	445	445	445	445	445
Other											
	3,696	3,446	3,696	3,916	3,977	4,017	4,297	4,537	4,937	4,937	5,887
			I		AST						
Iran	4,538	4,868	5,202	5,368	5,368	6,368	6,368	6,868	7,826	7,826	7,826
Iraq	150	150	150	150	150	150	150	150	150	150	150
Israel	245	245	245	245	245	245	245	245	245	245	245
Kuwait	1,026	1,770	1,770	1,770	1,770	1,770	1,770	1,770	1,770	1,770	1,770
Oman											
Qatar	1,220	1,220	2,195	2,520	2,520	2,520	2,520	2,520	2,520	2,520	4,520
Saudi Arabia	8,795	11,400	13,908	14,570	15,585	15,790	15,790	15,790	17,290	17,290	17,290
Turkey	520	520	520	520	520	520	520	520	520	520	520
United Arab Emirates	600	600	1,300	2,000	2,000	2,000	2,750	3,500	3,500	3,500	3,500
TOTAL - Middle East	17,094	20,773	25,290	27,143	28,158	29,363	30,113	31,363	33,821	33,821	35,821
SEthane	8 301	9 045	11 054	12 245	12 245	13 245	13 995	15 245	15 745	15 745	15 745
Ethane/Propane	1 250	3 155	5 000	5 000	6 015	6 220	6 220	6 220	6 220	6 220	7 520
EPB (Ethane Propane Butane)	2,360	2 910	3 573	4 235	4 235	4 235	4 235	4 235	4 235	4 235	4 935
FPB/Naphtha	4 485	4 815	4 815	4 815	4 815	4 815	4 815	4 815	6 773	6 773	6 773
Nanhtha	698	848	848	848	848	848	848	848	848	848	848
Recovery from ECC/DCC Unit											
	17,094	20,773	25,290	27,143	28,158	29,363	30,113	31,363	33,821	33,821	35,821

Source: IHS; Deutsche Bank

# 2 July 2014 Chemicals China's Coal to Olefins Industry

#### APPENDIX 9: Global ethylene capacity – Part 4

	2008	2009	2010	2011	2012	2013	2014e	2015e	2016e	2017e	2018e
				AFRICA	•						
Algeria	200	200	200	200	200	200	200	200	200	200	200
Egypt	300	300	300	300	300	300	300	300	530	760	760
Libya	330	330	330	330	330	330	330	330	330	330	330
Nigeria	300	300	300	300	300	300	300	300	300	300	300
South Africa	720	720	720	720	720	730	768	768	768	768	768
TOTAL - Africa	1,850	1,850	1,850	1,850	1,850	1,860	1,898	1,898	2,128	2,358	2,358
Etherne.	620	620	620	620	620	620	620	620	950	1 090	1 090
Enane	200	200	200	200	200	200	200	200	200	1,000	1,000
Nonbtha	300	300	300	300	300	300	300	300	300	300	300
Naphula Mathanal to Olofina	330	330	330	330	330	330	330	330	330	330	330
Highor Olofins Cracking	200	200	200	200	200	200	200	200	200	200	200
Anglier Orennis Gracking	200	200	200	200	200	200	200	200	200	200	200
-	1 850	1 850	1 850	1 850	1 850	1 860	1 999	1 202	2 128	2 359	2 358
	1,050	1,050	1,000	1,050	1,000	1,000	1,050	1,050	2,120	2,550	2,550
			INDIA		NTINENT						
India	3,085	3,013	3,826	4,080	4,080	4,080	4,963	5,850	6,525	7,200	7,200
Ethane/Propane	1 360	1 360	1 405	1 420	1 420	1 420	1 533	1 870	1 870	1 870	1 870
EPB/Naphtha							770	1.320	1.320	1,320	1.320
Naphtha	1.560	1.560	2.328	2.567	2.567	2.567	2.567	2.567	2,567	2,567	2.567
Ethanol Dehvdration	165	93	93	93	93	93	93	93	93	93	93
Recovery from FCC/DCC Unit									675	1,350	1,350
TOTAL - Indian Subcontinent	3,085	3,013	3,826	4,080	4,080	4,080	4,963	5,850	6,525	7,200	7,200
			NO	RTHEAST	ASIA						
China	10,280	11,093	14,993	15,636	16,347	17,805	19,513	21,808	24,578	28,258	29,483
Japan	7,824	7,824	7,824	7,734	7,689	7,689	7,421	7,260	6,789	6,734	6,734
North Korea	60	60	60	60	60	60	60	60	60	60	60
South Korea	7,288	7,390	7,498	7,633	8,076	8,180	8,203	8,320	8,320	8,320	8,520
Taiwan	4,050	4,050	4,050	4,050	3,916	4,120	4,420	4,420	3,920	3,920	3,920
TOTAL - Northeast Asia	29,502	30,417	34,425	35,113	36,088	37,854	39,617	41,868	43,667	47,292	48,717
FDR/Nanhtha	2 495	2 495	2 945	2 855	2 810	2 810	2 542	2 485	2 677	2 740	2 740
Nanhtha	19 872	20 391	2,040	23 448	23 776	24 409	25 507	25 520	24,857	2,740	2,740
FPB/Nanhtha/Gas Oil/Residues	1 710	2 043	2 710	2 710	2 960	3 310	3 310	3 310	3 310	3 310	3 310
Nanhtha/Gas Oil/Residues	5 4 2 5	5 4 2 5	5 575	5 625	5 992	6 525	7 108	7 375	7 275	8 858	9 275
Recovery from FCC/DCC Unit	0,420	63	150	150	150	150	150	375	450	450	650
Methanol to Olefins				25	100	350	500	1 158	2 045	2 045	2 045
Coal to Olefins			113	300	300	300	500	1 645	3 053	5 150	5 958
	29,502	30,417	34,425	35,113	36,088	37,854	39,617	41,868	43,667	47,292	48,717

Deutsche Bank AG/Hong Kong

Source: IHS; Deutsche Bank



#### APPENDIX 10: Global ethylene capacity – Part 5

	2008	2009	2010	2011	2012	2013	20140	2015e	2016e	20176	2018e
	2000	2005	SC	UTHEAST		2010	20140	20100	20100	20170	20100
Australia	504	504	472	472	472	472	472	472	472	472	472
Indonesia	600	600	600	600	600	600	600	600	860	860	860
Malavsia	1,723	1,723	1,723	1,723	1,723	1,723	1,787	1,850	1,850	1,850	1,850
Philippines	, 	·	·	, 	, 	·	267	320	320	320	320
Singapore	1,955	1,955	2,622	2,755	2,755	3,422	3,805	3,955	3,955	3,955	3,955
Thailand	2,428	2,528	4,120	4,428	4,428	4,428	4,428	4,428	4,428	4,428	4,428
TOTAL - Southeast Asia	7,210	7,310	9,537	9,978	9,978	10,645	11,359	11,625	11,885	11,885	11,885
Ethane	922	1 224	2 109	2 192	2 192	2 192	2 192	2 192	2 192	2 192	2 192
Ethane/Propane	600	600	600	600	600	600	600	600	600	600	600
EPB (Ethane, Propane, Butane)	543	543	543	543	543	543	543	543	543	543	543
EPB/Naphtha	1,797	1,595	1,595	1,595	1,595	1,595	1,595	1,595	1,595	1,595	1,595
Naphtha	2,123	2,123	2,798	3,023	3,023	3,023	3,354	3,470	3,730	3,730	3,730
Naphtha/Gas Oil/Residues	1,225	1,225	1,892	2,025	2,025	2,692	3,075	3,225	3,225	3,225	3,225
	7,210	7,310	9,537	9,978	9,978	10,645	11,359	11,625	11,885	11,885	11,885
				WORLD	)						
Ethane	20,129	21,175	24,069	25,243	25,193	26,207	27,197	28,987	30,467	33,572	37,235
Ethane/Propane	9,679	10,752	12,482	12,740	13,755	14,392	14,634	15,100	15,500	15,500	16,800
EPB (Ethane,Propane,Butane)	6,932	7,402	8,034	9,160	9,214	9,214	9,214	9,254	9,296	9,296	9,996
EPB/Naphtha	29,891	30,053	30,503	30,355	30,531	31,302	32,060	32,795	34,995	35,058	35,058
Naphtha	37,085	37,374	41,208	42,188	42,286	42,229	43,658	43,702	43,044	42,926	43,076
EPB/Naphtha/Gas Oil/Residues	15,033	14,738	15,638	15,629	15,879	16,229	16,229	16,706	16,706	16,874	16,874
Naphtha/Gas Oil/Residues	9,989	9,621	10,302	10,295	10,342	11,468	12,213	12,630	12,530	14,113	14,530
Ethanol Dehydration	165	93	143	293	293	293	293	293	293	293	293
Recovery from FCC/DCC Unit	557	638	621	621	621	621	621	846	1,596	2,271	2,471
Methanol to Olefins				25	100	350	500	1,158	2,045	2,045	2,045
Higher Olefins Cracking	200	200	200	200	200	200	200	200	200	200	200
Coal to Olefins			113	300	300	300	500	1,645	3,053	5,150	5,958
Other	400	400	400	400	400	410	448	448	448	448	448
TOTAL - World	130,060	132,446	143,713	147,449	149,114	153,215	157,767	163,764	170,173	177,746	184,984

Source: IHS; Deutsche Bank

#### APPENDIX 11: Global propylene capacity – Part 1

(in thousand tons)	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
				NORTH AM	IERICA					
Canada	946	928	1,003	1,003	883	823	823	823	823	823
Mexico	861	921	921	921	1,266	1,381	1,385	1,397	1,413	1,413
United States	17,554	18,232	18,159	18,422	18,698	17,641	17,416	17,761	17,879	18,277
	19,361	20,081	20,083	20,346	20,847	19,845	19,624	19,981	20,115	20,513
Steam Cracker-Chem, grade	4 404	4 852	4 935	5 031	5 064	4 178	4 174	4 136	4 152	4 381
Steam Cracker-Poly, grade	5 405	5 500	5 419	5 435	5 282	5 064	4 627	4 702	4 702	4 702
Refinery-Chem. grade	2,858	2,898	2,898	2,898	3,243	3,358	3,358	3,358	3,358	3,358
Refinery-Poly, grade	5,906	6.043	6.043	6,194	6.470	6,457	6,457	6,457	6,457	6,626
Metathesis	788	788	788	788	788	788	788	788	788	788
C3 Dehvdro-Poly, grade	0	0	0	0	0	0	270	540	658	658
	19,361	20,081	20,083	20,346	20,847	19,845	19,624	19,981	20,115	20,513
Argentina	220	227	276	300 TH AIV	206	206	206	306	206	206
Brazil	1 999	1 040	2 036	2 096	2 636	2 846	2 846	2 846	2 846	2 846
Chile	1,888	1, <i>9</i> 40	2,030	2,090	2,030	2,840	2,840	2,840	2,840	2,840
Colombia	130	130	150	100	150	150	150	150	150	150
Venezuela	395	395	395	395	305	395	400	420	420	420
<u> </u>	2,733	2,797	2,937	3,117	3,707	3,917	3,922	3,942	3,942	3,942
Steam Cracker-Chem. grade	457	457	457	457	469	469	469	469	469	469
Steam Cracker-Poly. grade	1,296	1,312	1,404	1,404	1,470	1,500	1,500	1,500	1,500	1,500
Refinery-Chem. grade	80	116	120	120	120	120	120	120	120	120
Refinery-Poly. grade	900	912	956	1,136	1,648	1,828	1,833	1,853	1,853	1,853
	2,733	2,797	2,937	3,117	3,707	3,917	3,922	3,942	3,942	3,942

Source: IHS, Deutsche Bank

#### APPENDIX 12: Global propylene capacity – Part 2

(in the work of the set)	2004	2005	2000	2007	2000	2000	2010	2011	2012	2012
(in thousana tons)	2004	2005	2006	CENTRAL E	UROPE	2009	2010	2011	2012	2013
Austria	300	315	365	365	365	365	365	365	365	365
Bulgaria	125	125	125	125	125	125	55	60	65	65
Czech Republic & Slovakia	480	525	595	595	621	621	621	621	621	621
Former Yugoslavia	85	85	85	85	85	85	85	85	85	85
Greece	120	120	120	120	120	120	120	120	120	120
Hungary	275	385	385	385	385	403	403	403	403	403
Poland	310	355	485	485	485	485	485	485	485	485
Romania	205	205	225	225	225	130	130	130	90	90
Turkey	200	232	240	240	240	240	240	240	240	240
	2,100	2,347	2,625	2,625	2,651	2,574	2,504	2,509	2,474	2,474
Steam Cracker-Chem. grade	280	280	280	280	280	185	185	185	185	185
Steam Cracker-Poly, grade	1.145	1.347	1.545	1.545	1.571	1.589	1.519	1.519	1.519	1.519
Refinery-Chem, grade	220	220	175	175	175	175	175	180	185	185
Refinery-Poly. grade	455	500	625	625	625	625	625	625	585	585
, , , ,	2,100	2,347	2,625	2,625	2,651	2,574	2,504	2,509	2,474	2,474
				WEST EU	ROPE					
Belgium	1,835	1,870	1,870	1,870	2,055	2,055	2,055	2,055	2,055	1,973
Finland	200	200	203	223	223	223	223	223	223	223
France	2,721	2,721	2,721	2,721	2,721	2,571	2,496	2,481	2,411	2,411
German Federal Republic	4,042	4,042	4,042	4,115	4,571	4,614	4,639	4,627	4,514	4,514
Italy	1,635	1,635	1,635	1,635	1,593	1,550	1,550	1,485	1,420	1,382
Netherlands	2,318	2,318	2,318	2,380	2,380	2,380	2,380	2,380	2,380	2,380
Norway	105	105	105	105	105	105	105	105	105	105
Portugal	185	185	188	200	200	200	200	200	200	200
Spain	1,295	1,368	1,400	1,400	1,400	1,400	1,433	1,450	1,450	1,450
Sweden	350	350	350	350	350	350	350	350	350	350
United Kingdom	1,231	1,221	1,221	1,221	1,221	1,221	1,188	1,121	1,121	1,121
	15,917	16,015	16,053	16,220	16,819	16,669	16,619	16,477	16,229	16,109
Steam Cracker-Chem. grade	5,767	5,987	5,990	6,007	6,039	5,889	5,856	5,687	5,509	5,427
Steam Cracker-Poly. grade	6,084	5,922	5,957	6,052	6,274	6,274	6,307	6,324	6,324	6,286
Refinery-Chem. grade	2,236	2,236	2,236	2,156	2,166	2,166	2,166	2,166	2,096	2,096
Refinery-Poly. grade	1,240	1,230	1,230	1,345	1,460	1,460	1,410	1,420	1,420	1,420
Metathesis	0	0	0	20	240	240	240	240	240	240
C3 Dehydro-Poly. grade	590	640	640	640	640	640	640	640	640	640
	15,917	16,015	16,053	16,220	16,819	16,669	16,619	16,477	16,229	16,109

Source: IHS, Deutsche Bank

# 2 July 2014 Chemicals China's Coal to Olefins Industry

(in thousand tons)	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
				CIS & BALTIO	STATES					
Other Fmr. Soviet Union	0	0	0	0	0	0	0	0	0	C
Russia	1,462	1,417	1,441	1,454	1,502	1,502	1,477	1,627	1,627	1,958
	1,462	1,417	1,441	1,454	1,502	1,502	1,477	1,627	1,627	1,958
Steam Cracker-Chem. grade	1,037	992	1,002	1,015	1,063	1,063	1,063	1,063	1,063	1,082
Steam Cracker-Poly. grade	125	125	139	139	139	139	139	139	139	139
Refinery-Chem. grade	0	0	0	0	0	0	0	150	150	150
Refinery-Poly.grade	300	300	300	300	300	300	275	275	275	460
	1,462	1,417	1,441	1,454	1,502	1,502	1,477	1,627	1,627	1,831
				MIDDLE	EAST					
Iran	321	411	576	746	975	1,051	1,051	1,051	1,051	1,051
srael	240	240	250	390	450	450	450	450	450	450
Kuwait	143	143	143	143	164	185	185	185	185	214
Saudi Arabia	1,455	1,565	1,630	1,670	2,448	4,427	5,465	5,795	6,166	6,340
United Arab Emirates	0	0	0	0	0	0	213	802	802	802
	2,159	2,359	2,599	2,949	4,037	6,113	7,364	8,283	8,654	8,857
Steam Cracker-Chem. grade	155	155	160	175	175	175	175	175	175	175
HS FCC	0	0	0	0	0	533	800	800	800	800
Steam Cracker-Poly. grade	1,464	1,554	1,784	1,994	2,447	3,108	3,791	4,146	4,350	4,420
Refinery-Poly. grade	200	200	205	220	220	220	220	220	220	320
Metathesis	0	0	0	110	212	420	608	1,172	1,339	1,372
C3 Dehydro-Poly. grade	340	450	450	450	983	1,658	1,770	1,770	1,770	1,770
	2,159	2,359	2,599	2,949	4,037	6,113	7,364	8,283	8,654	8,857

Source: IHS, Deutsche Bank

#### APPENDIX 14: Global propylene capacity – Part 4

(in thousand tons)	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
				NORTHEAS	T ASIA					
China	6,630	7,543	8,636	9,478	9,844	10,558	12,909	14,691	16,239	17,930
Japan	5,919	6,175	6,413	6,484	6,553	6,599	6,687	6,506	6,495	6,495
Korea (North)	30	30	30	30	30	30	30	30	30	30
Korea (South)	3,926	4,012	4,342	4,844	5,416	5,746	5,801	5,956	6,307	6,713
Malaysia	916	916	950	962	1,070	1,092	1,092	1,092	1,092	1,092
Taiwan	2,099	2,099	2,243	2,881	3,303	3,303	3,303	3,303	3,279	3,808
	19,520	20,775	22,614	24,679	26,216	27,328	29,822	31,578	33,442	36,068
Steam Cracker-Chem, grade	3 031	3 133	3 183	3 261	3 288	3 288	3 701	3 771	3 726	3 723
HS FCC	464	464	464	464	464	529	613	613	646	713
Coal to Olefins	0	0	0	0	0	0	113	300	300	300
Coal to Propylene	0	0	0	0	0	0	0	333	875	1.000
Steam Cracker-Poly. grade	9.156	9.901	10.754	12.053	12.726	13.152	14.644	14.790	15.281	16.049
Refinery-Chem. grade	944	984	984	984	984	1.014	1.080	1.554	1.797	1.797
Refinery-Poly. grade	5,100	5,273	5,860	6,256	6,785	7,204	7,261	7,727	8,252	9,496
Metathesis	30	225	545	816	1,124	1,296	1,546	1,546	1,546	1,546
C3 Dehydro-Poly. grade	795	795	795	795	795	795	795	795	795	945
Olefin Cracking	0	0	29	50	50	50	69	124	124	124
	19,520	20,775	22,614	24,679	26,216	27,328	29,822	31,553	33,342	35,693
				SOUTHEAS	T ASIA					
Indonesia	505	525	548	573	595	595	595	595	595	745
Singapore	1,225	1,225	1,352	1,466	1,466	1,466	1,841	1,916	1,916	2,249
Thailand	1,181	1,282	1,303	1,319	1,358	1,383	2,102	2,516	2,549	2,616
	2,911	3,032	3,203	3,358	3,419	3,444	4,538	5,027	5,060	5,610
HS FCC	180	180	180	120	120	120	120	120	120	120
Steam Cracker-Poly. grade	2,136	2,237	2,268	2,363	2,424	2,449	3,266	3,422	3,422	3,755
Refinery-Poly. grade	495	515	538	575	575	575	575	575	575	575
Metathesis	0	0	117	200	200	200	425	500	533	750
C3 Dehydro-Poly. grade	100	100	100	100	100	100	152	410	410	410
	2,911	3,032	3,203	3,358	3,419	3,444	4,538	5,027	5,060	5,610

Source: IHS, Deutsche Bank

Deutsche Bank AG/Hong Kong

#### APPENDIX 15: Global propylene capacity – Part 5

(in thousand tons)	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
				AUSTRALI	ASIA					
Australia	400	387	350	350	380	380	380	380	360	300
Steam Cracker-Chem grade	50	37	0	0	0	0	0	0	0	0
Steam Cracker-Poly grade	50 60	57 60	60	60	90	90	90	90	90	90
Refinery-Poly grade	290	290	290	290	290	290	290	290	270	210
	400	387	350	350	380	380	380	380	360	300
				AFRIC	4					
Egypt	26	26	26	26	26	26	26	401	426	426
Libya	170	170	170	170	170	170	170	170	170	170
Nigeria	135	135	135	135	135	135	135	135	135	135
South Africa	690	690	790	910	1,030	1,030	1,030	1,030	1,030	1,030
	1,021	1,021	1,121	1,241	1,361	1,361	1,361	1,736	1,761	1,761
Steam Cracker-Chem. grade	26	26	26	26	26	26	26	26	26	26
Other	650	650	750	750	750	750	750	750	750	750
Steam Cracker-Poly. grade	245	245	245	245	245	245	245	245	245	245
Refinery-Poly. grade	100	100	100	100	100	100	100	100	100	100
C3 Dehydro-Poly. grade	0	0	0	0	0	0	0	375	400	400
	1,021	1,021	1,121	1,121	1,121	1,121	1,121	1,496	1,521	1,521
				INDIAN SUBCO	NTINENT					
India	1,834	1,894	2,337	2,484	2,484	3,159	3,939	4,114	4,114	4,187
Steam Cracker-Chem. grade	503	503	531	578	578	578	578	578	578	578
HS FCC	0	0	0	0	0	675	900	900	900	900
Steam Cracker-Poly, grade	346	406	386	386	386	386	941	1.116	1.116	1.116
Refinery-Chem. grade	82	82	157	157	157	157	157	157	157	157
Refinery-Poly. grade	903	903	1,263	1,363	1,363	1,363	1,363	1,363	1,363	1,436
, , , , , , , , , , , , , , , , , , , ,	1,834	1,894	2,337	2,484	2,484	3,159	3,939	4,114	4,114	4,187

Source: IHS, Deutsche Bank



#### APPENDIX 16: Global propylene capacity – Part 6

(in thousand tons)	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
				WORL	D					
Steam Cracker-Chem. grade	16,015	16,727	16,869	17,135	17,286	16,039	16,482	16,417	16,211	16,374
HS FCC	644	644	644	584	712	1,997	2,573	2,573	2,606	2,673
Coal to Olefins	0	0	0	0	0	0	113	300	300	300
Coal to Propylene	0	0	0	0	0	0	0	333	875	1,000
Other	650	650	750	750	750	750	750	750	750	750
Steam Cracker-Poly. grade	27,462	28,609	29,961	31,676	33,054	33,996	37,069	37,993	38,688	39,821
Refinery-Chem. grade	6,420	6,536	6,570	6,490	6,845	6,990	7,056	7,685	7,863	7,863
Refinery-Poly. grade	16,079	16,456	17,713	18,934	20,366	21,083	21,124	21,620	22,085	23,796
Metathesis	818	1,013	1,450	1,934	2,564	2,944	3,607	4,246	4,446	4,696
C3 Dehydro-Poly. grade	1,825	1,985	1,985	1,985	2,518	3,193	3,627	4,530	4,673	4,951
Olefin Cracking	0	0	29	170	290	290	309	364	364	364
TOTAL - World	69,913	72,620	75,970	79,657	84,385	87,280	92,710	96,836	98,961	102,962

Source: IHS, Deutsche Bank

#### APPENDIX 17 : Statistics of major pollutants by provinces in China

		SO ₂	NOx	CO ₂	СО	PM2.5	PM10
	Region	(Kilo tons)	(Kilo tons)	(Mln tons)	(Kilo tons)	(Kilo tons)	(Kilo tons)
Beijing	North-Central	187	312	98	2,267	83	118
Tianjin	North-Central	351	594	186	3,003	137	181
Hebei	North-Central	1,942	2,009	782	16,730	1,021	1,395
Shanxi	North-Central	1,660	1,243	443	6,639	473	656
Inner Mongolia	North-Central	1,304	1,248	470	5,273	534	697
Liaoning	Northeast	1,188	1,339	456	9,421	525	724
Jilin	Northeast	356	586	212	4,168	298	410
Heilongjiang	Northeast	309	764	260	5,258	356	460
Shanghai	East	691	914	194	4,020	154	212
Jiangsu	East	1,341	1,889	710	11,500	749	1,019
Zhejiang	East	909	1,335	413	5,263	299	446
Anhui	East	803	1,184	402	9,702	617	782
Fujian	East	486	766	249	3,414	219	321
Jiangxi	East	633	576	225	4,643	288	442
Shandong	East	3,199	2,610	905	17,234	1,182	1,704
Henan	South-central	1,402	1,874	683	12,418	859	1,237
Hubei	South-central	1,241	1,107	412	8,869	539	741
Hunan	South-central	1,036	963	336	7,423	571	769
Guangdong	South-central	1,112	1,836	607	8,834	492	737
Guangxi	South-central	738	710	269	7,384	483	618
Hainan	South-central	38	127	38	674	38	50
Chongqing	Southwest	1,148	487	179	3,088	214	303
Sichuan	Southwest	1,813	1,083	409	10,276	573	768
Guizhou	Southwest	1,075	752	259	3,896	305	409
Yunnan	Southwest	616	735	232	4,440	404	550
Tibet	Southwest	1	23	4	136	7	8
Shaanxi	Northwest	926	703	276	4,794	289	400
Gansu	Northwest	409	380	149	2,708	200	256
Qinghai	Northwest	36	93	38	534	61	78
Ningxia	Northwest	303	277	103	842	94	136
Xinjiang	Northwest	460	458	176	3,047	230	306
Total		27,713	28,977	10,175	187,898	12,294	16,933

Source: :"Emissions of anthropogenic atmospheric pollutants and CO2" by researchers of Harvard University and Nanjiang University, Deutsche Bank

#### APPENDIX 18 : Statistics of major pollutants by provinces in China (by %)

		SO ₂	NOx	CO ₂	со	PM2.5	PM10	Σ
Beijing	North-Central	0.7%	1.1%	1.0%	1.2%	0.7%	0.7%	5.3%
Tianiin	North-Central	1.3%	2.0%	1.8%	1.6%	1.1%	1.1%	8.9%
Hebei	North-Central	7.0%	6.9%	7.7%	8.9%	8.3%	8.2%	47.1%
Shanxi	North-Central	6.0%	4.3%	4.4%	3.5%	3.8%	3.9%	25.9%
Inner Mongolia	North-Central	4.7%	4.3%	4.6%	2.8%	4.3%	4.1%	24.9%
Liaoning	Northeast	4.3%	4.6%	4.5%	5.0%	4.3%	4.3%	<b>26.9%</b>
Jilin	Northeast	1.3%	2.0%	2.1%	2.2%	2.4%	2.4%	<b>12.5%</b>
Heilongjiang	Northeast	1.1%	2.6%	2.6%	2.8%	2.9%	2.7%	14.7%
Shanghai	East	2.5%	3.2%	1.9%	2.1%	1.3%	1.3%	<b>12.2%</b>
Jiangsu	East	4.8%	6.5%	7.0%	6.1%	6.1%	6.0%	<b>36.6%</b>
Zhejiang	East	3.3%	4.6%	4.1%	2.8%	2.4%	2.6%	<b>19.8%</b>
Anhui	East	2.9%	4.1%	4.0%	5.2%	5.0%	4.6%	25.7%
Fujian	East	1.8%	2.6%	2.4%	1.8%	1.8%	1.9%	<b>12.3%</b>
Jiangxi	East	2.3%	2.0%	2.2%	2.5%	2.3%	2.6%	<b>13.9%</b>
Shandong	East	11.5%	9.0%	8.9%	9.2%	9.6%	10.1%	<b>58.3%</b>
Henan	South-central	5.1%	6.5%	6.7%	6.6%	7.0%	7.3%	<b>39.1%</b>
Hubei	South-central	4.5%	3.8%	4.0%	4.7%	4.4%	4.4%	<b>25.8%</b>
Hunan	South-central	3.7%	3.3%	3.3%	4.0%	4.6%	4.5%	<b>23.5%</b>
Guangdong	South-central	4.0%	6.3%	6.0%	4.7%	4.0%	4.4%	<b>29.4%</b>
Guangxi	South-central	2.7%	2.5%	2.6%	3.9%	3.9%	3.6%	<b>19.3%</b>
Hainan	South-central	0.1%	0.4%	0.4%	0.4%	0.3%	0.3%	<b>1.9%</b>
Chongqing	Southwest	4.1%	1.7%	1.8%	1.6%	1.7%	1.8%	<b>12.8%</b>
Sichuan	Southwest	6.5%	3.7%	4.0%	5.5%	4.7%	4.5%	<b>29.0%</b>
Guizhou	Southwest	3.9%	2.6%	2.5%	2.1%	2.5%	2.4%	<b>16.0%</b>
Yunnan	Southwest	2.2%	2.5%	2.3%	2.4%	3.3%	3.2%	<b>15.9%</b>
Tibet	Southwest	0.0%	0.1%	0.0%	0.1%	0.1%	0.0%	<b>0.3%</b>
Shaanxi	Northwest	3.3%	2.4%	2.7%	2.6%	2.4%	2.4%	15.7%
Gansu	Northwest	1.5%	1.3%	1.5%	1.4%	1.6%	1.5%	<b>8.8%</b>
Qinghai	Northwest	0.1%	0.3%	0.4%	0.3%	0.5%	0.5%	<b>2.1%</b>
Ningxia	Northwest	1.1%	1.0%	1.0%	0.4%	0.8%	0.8%	5.1%
Xinjiang	Northwest	1.7%	1.6%	1.7%	1.6%	1.9%	1.8%	<b>10.3%</b>
Total		100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	

Source: :"Emissions of anthropogenic atmospheric pollutants and CO2" by researchers of Harvard University and Nanjiang University, Deutsche Bank

#### **APPENDIX 19**: Listed Companies mentioned in this report and their DB rating (if appropriate)

COMPANY NAME:	BBRG Ticker	Sha	re Price	DB Rating
Air Liquide SA	AI FP	EUR	97.06	BUY
Air products and Chemicals, Inc	APD UN	USD	128.83	BUY
China BlueChemical Ltd.	3983 HK			
China Coal Energy Company Limited	1898 HK	HKD	4.06	HOLD
China Energy Ltd.	CEGY SP			
China Petroleum & Chemical Corporation	386 HK			
China Sanjiang Fine Chemicals Co., Ltd.	2198 HK			
China Shenhua Energy Company Limited	1088 HK	HKD	22.35	BUY
CNOOC Limited	883 HK	HKD	13.82	HOLD
Datang International Power Generation Co., Ltd.	991 HK	HKD	3.03	BUY
Dongfang Electric Corporation Limited	1072 HK	HKD	13.00	BUY
Feishang Anthracite Resources Limited	1738 HK			
GD Power Development Co., Ltd.	600795 CH			
General Electric Company	GE US	USD	26.29	BUY
Guanghui Energy Co., Ltd.	600256 CH			
Hangzhou Hangyang Co., Ltd.	002430 CH			
Inner Mongolia Yitai	900946 CH			
Inner Mongolia Yuan Xing Energy Co., Ltd.	000683 CH			
Jiangsu Sopo Chemical Co	600746 CH			
Johnson Matthey plc	JMAT LN	GBP	3,050	BUY
KBR, Inc.	KBR US	USD	23.51	BUY
Kingboard Chemical Holdings Limited	148 HK	-	-	-
LCY Chemical Corp.	1704 TT			
Linde AG	LIN GY	EUR	154.11	BUY
Lotte Chemical	011170 KS	KRW	181.000	BUY
Methanex Corporation	MX CN		,	
Methanol Chemicals Company	Chemanol AB			
Mitsubishi Corporation	8058 IP			
Mitsubishi Gas Chemical Company. Inc	4182 JP			
Mitsui & Co Ltd.	8031 IP			
Nan Ya Plastics	1303 TT	тwр	71.60	BUY
Nylex Malaysia Bhd				20.
Petrochina Company Limited	857 HK	нкр	9.82	BUV
Petronas Chemicals Group Bhd		MYR	6.78	HOLD
Praxair Inc.	PX UN	USD	131.03	BUY
PTT Global Chemical PCI	PTTGC TR	THR	66 75	
Roval Dutch Shell PLC	RDSAIN	GRP	2 405	HOLD
Saudi Basic Industries Corporation	SARIC AR	SAR	115 98	RIIV
Saudi International Petrochemical Co		541	113.50	501
Shenergy Company Limited	600642 CH			
Siomone AG		ELID	96 77	PUV
SINOPEC Engineering (Group) Co. 1td	31E UT 2206 UP		90.// 0 CA	BUY
Siver Le Engineering (Group) Co., Lta.	2300 FIN	ΠKU	0.04	BUT
The Daw Chemical Company			ED 10	
Misen Engineering Services Coult		050	52.12	HOLD
wison Engineering Services Co., Ltd.	2230 HK			
rang Quan Coal Industry Group Co., Ltd.	000348 CH		0.43	<b>DUN</b>
VINGRE GASES GROUP COMPANY LIMITED	2168 HK	HKD	8.42	BUY

### Appendix 1

#### **Important Disclosures**

#### Additional information available upon request

Disclosure checklist								
Company	Ticker	Recent price*	Disclosure					
PetroChina	0857.HK	9.78 (HKD) 30 Jun 14	6,17,SD11					
Sinopec	0386.HK	7.40 (HKD) 30 Jun 14	17,SD11					

*Prices are sourced from local exchanges via Reuters, Bloomberg and other vendors. Data is sourced from Deutsche Bank and subject companies

#### Important Disclosures Required by U.S. Regulators

Disclosures marked with an asterisk may also be required by at least one jurisdiction in addition to the United States. See Important Disclosures Required by Non-US Regulators and Explanatory Notes.

6. Deutsche Bank and/or its affiliate(s) owns one percent or more of any class of common equity securities of this company calculated under computational methods required by US law.

#### Important Disclosures Required by Non-U.S. Regulators

Please also refer to disclosures in the Important Disclosures Required by US Regulators and the Explanatory Notes.

- 6. Deutsche Bank and/or its affiliate(s) owns one percent or more of any class of common equity securities of this company calculated under computational methods required by US law.
- 17. Deutsche Bank and or/its affiliate(s) has a significant Non-Equity financial interest (this can include Bonds, Convertible Bonds, Credit Derivatives and Traded Loans) where the aggregate net exposure to the following issuer(s), or issuer(s) group, is more than 25m Euros.

#### Special Disclosures

- 11. Deutsche Bank AG and/or an affiliate(s) acted as a Financial Advisor to PetroChina Company Limited on the acquisition of the entire share capital of Singapore Petroleum Company.
- 11. Deutsche Bank AG and/or affiliate(s) is acting as financial advisor to China Petroleum & amp; Chemical Corporation in relation to restructuring Sinopec Sales Co., Ltd. and introducing social and private capital to realize diversified ownership of its marketing segment.

For disclosures pertaining to recommendations or estimates made on securities other than the primary subject of this research, please see the most recently published company report or visit our global disclosure look-up page on our website at <a href="http://gm.db.com/ger/disclosure/DisclosureDirectory.eqsr">http://gm.db.com/ger/disclosure/DisclosureDirectory.eqsr</a>

#### **Analyst Certification**

The views expressed in this report accurately reflect the personal views of the undersigned lead analyst about the subject issuers and the securities of those issuers. In addition, the undersigned lead analyst has not and will not receive any compensation for providing a specific recommendation or view in this report. David Hurd

### Historical recommendations and target price: PetroChina (0857.HK) (as of 6/30/2014)



#### Equity rating key

Buy: Based on a current 12- month view of total share-holder return (TSR = percentage change in share price from current price to projected target price plus pro-jected dividend yield ), we recommend that investors buy the stock.

Sell: Based on a current 12-month view of total shareholder return, we recommend that investors sell the stock

Hold: We take a neutral view on the stock 12-months out and, based on this time horizon, do not recommend either a Buy or Sell. Notes:

1. Newly issued research recommendations and target prices always supersede previously published research.

2. Ratings definitions prior to 27 January, 2007 were:

Buy: Expected total return (including dividends) of 10% or more over a 12-month period Hold: Expected total return (including

dividends) between -10% and 10% over a 12month period

Sell: Expected total return (including dividends) of -10% or worse over a 12-month period

Equity rating dispersion and banking relationships



#### **Regulatory Disclosures**

#### 1. Important Additional Conflict Disclosures

Aside from within this report, important conflict disclosures can also be found at https://gm.db.com/equities under the "Disclosures Lookup" and "Legal" tabs. Investors are strongly encouraged to review this information before investing.

#### 2. Short-Term Trade Ideas

Deutsche Bank equity research analysts sometimes have shorter-term trade ideas (known as SOLAR ideas) that are consistent or inconsistent with Deutsche Bank's existing longer term ratings. These trade ideas can be found at the SOLAR link at <u>http://gm.db.com</u>.

#### 3. Country-Specific Disclosures

Australia and New Zealand: This research, and any access to it, is intended only for "wholesale clients" within the meaning of the Australian Corporations Act and New Zealand Financial Advisors Act respectively.

Brazil: The views expressed above accurately reflect personal views of the authors about the subject company(ies) and its(their) securities, including in relation to Deutsche Bank. The compensation of the equity research analyst(s) is indirectly affected by revenues deriving from the business and financial transactions of Deutsche Bank. In cases where at least one Brazil based analyst (identified by a phone number starting with +55 country code) has taken part in the preparation of this research report, the Brazil based analyst whose name appears first assumes primary responsibility for its content from a Brazilian regulatory perspective and for its compliance with CVM Instruction # 483.

EU countries: Disclosures relating to our obligations under MiFiD can be found at <u>http://www.globalmarkets.db.com/riskdisclosures</u>.

Japan: Disclosures under the Financial Instruments and Exchange Law: Company name - Deutsche Securities Inc. Registration number - Registered as a financial instruments dealer by the Head of the Kanto Local Finance Bureau (Kinsho) No. 117. Member of associations: JSDA, Type II Financial Instruments Firms Association, The Financial Futures Association of Japan, Japan Investment Advisers Association. Commissions and risks involved in stock transactions - for stock transactions, we charge stock commissions and consumption tax by multiplying the transaction amount by the commission rate agreed with each customer. Stock transactions can lead to losses as a result of share price fluctuations and other factors. Transactions in foreign stocks can lead to additional losses stemming from foreign exchange fluctuations. "Moody's", "Standard & Poor's", and "Fitch" mentioned in this report are not registered credit rating agencies in Japan unless Japan or "Nippon" is specifically designated in the name of the entity. Reports on Japanese listed companies not written by analysts of Deutsche Securities Inc. (DSI) are written by Deutsche Bank Group's analysts with the coverage companies specified by DSI.

Qatar: Deutsche Bank AG in the Qatar Financial Centre (registered no. 00032) is regulated by the Qatar Financial Centre Regulatory Authority. Deutsche Bank AG - QFC Branch may only undertake the financial services activities that fall within the scope of its existing QFCRA license. Principal place of business in the QFC: Qatar Financial Centre, Tower, West Bay, Level 5, PO Box 14928, Doha, Qatar. This information has been distributed by Deutsche Bank AG. Related financial products or services are only available to Business Customers, as defined by the Qatar Financial Centre Regulatory Authority.

Russia: This information, interpretation and opinions submitted herein are not in the context of, and do not constitute, any appraisal or evaluation activity requiring a license in the Russian Federation.

Kingdom of Saudi Arabia: Deutsche Securities Saudi Arabia LLC Company, (registered no. 07073-37) is regulated by the Capital Market Authority. Deutsche Securities Saudi Arabia may only undertake the financial services activities that fall within the scope of its existing CMA license. Principal place of business in Saudi Arabia: King Fahad Road, Al Olaya District, P.O. Box 301809, Faisaliah Tower - 17th Floor, 11372 Riyadh, Saudi Arabia.

United Arab Emirates: Deutsche Bank AG in the Dubai International Financial Centre (registered no. 00045) is regulated by the Dubai Financial Services Authority. Deutsche Bank AG - DIFC Branch may only undertake the financial services activities that fall within the scope of its existing DFSA license. Principal place of business in the DIFC: Dubai International Financial Centre, The Gate Village, Building 5, PO Box 504902, Dubai, U.A.E. This information has been distributed by Deutsche Bank AG. Related financial products or services are only available to Professional Clients, as defined by the Dubai Financial Services Authority.

#### David Folkerts-Landau Group Chief Economist

Member of the Group Executive Committee

Guy Ashton **Global Chief Operating Officer** Research

Marcel Cassard Global Head FICC Research & Global Macro Economics

**Ralf Hoffmann Regional Head** Deutsche Bank Research, Germany

Andreas Neubauer **Regional Head** Equity Research, Germany

**Richard Smith and Steve Pollard Co-Global Heads** Equity Research

> Steve Pollard **Regional Head** Americas Research

#### International locations

Michael Spencer

Regional Head

Asia Pacific Research

Deutsche Bank AG Deutsche Bank Place Level 16 Corner of Hunter & Phillip Streets Sydney, NSW 2000 Australia

Tel: (61) 2 8258 1234

#### Deutsche Bank AG London

1 Great Winchester Street London EC2N 2EQ United Kingdom Tel: (44) 20 7545 8000

Deutsche Bank AG Große Gallusstraße 10-14 60272 Frankfurt am Main Germany Tel: (49) 69 910 00

Deutsche Bank Securities Inc. 60 Wall Street New York, NY 10005 United States of America Tel: (1) 212 250 2500

#### Global Disclaimer

The information and opinions in this report were prepared by Deutsche Bank AG or one of its affiliates (collectively "Deutsche Bank"). The information herein is believed to be reliable and has been obtained from public sources believed to be reliable. Deutsche Bank makes no representation as to the accuracy or completeness of such information.

Deutsche Bank may engage in securities transactions, on a proprietary basis or otherwise, in a manner inconsistent with the view taken in this research report. In addition, others within Deutsche Bank, including strategists and sales staff, may take a view that is inconsistent with that taken in this research report.

Opinions, estimates and projections in this report constitute the current judgement of the author as of the date of this report. They do not necessarily reflect the opinions of Deutsche Bank and are subject to change without notice. Deutsche Bank has no obligation to update, modify or amend this report or to otherwise notify a recipient thereof in the event that any opinion, forecast or estimate set forth herein, changes or subsequently becomes inaccurate. Prices and availability of financial instruments are subject to change without notice. This report is provided for informational purposes only. It is not an offer or a solicitation of an offer to buy or sell any financial instruments or to participate in any particular trading strategy. Target prices are inherently imprecise and a product of the analyst judgement.

In August 2009, Deutsche Bank instituted a new policy whereby analysts may choose not to set or maintain a target price of certain issuers under coverage with a Hold rating. In particular, this will typically occur for "Hold" rated stocks having a market cap smaller than most other companies in its sector or region. We believe that such policy will allow us to make best use of our resources. Please visit our website at http://gm.db.com to determine the target price of any stock

The financial instruments discussed in this report may not be suitable for all investors and investors must make their own informed investment decisions. Stock transactions can lead to losses as a result of price fluctuations and other factors. If a financial instrument is denominated in a currency other than an investor's currency, a change in exchange rates may adversely affect the investment. Past performance is not necessarily indicative of future results. Deutsche Bank may with respect to securities covered by this report, sell to or buy from customers on a principal basis, and consider this report in deciding to trade on a proprietary basis.

proprietary basis. Unless governing law provides otherwise, all transactions should be executed through the Deutsche Bank entity in the investor's home jurisdiction. In the U.S. this report is approved and/or distributed by Deutsche Bank Securities Inc., a member of the NYSE, the NASD, NFA and SIPC. In Germany this report is approved and/or communicated by Deutsche Bank AG Frankfurt authorized by the BaFin. In the United Kingdom this report is approved and/or communicated by Deutsche Bank AG London, a member of the London Stock Exchange and regulated by the Financial Conduct Authority for the conduct of investment business in the UK and authorized by the BaFin. This report is distributed in Hong Kong by Deutsche Bank AG, Hong Kong Branch, in Korea by Deutsche Securities Korea Co. This report is distributed in Singapore by Deutsche Bank AG, Singapore Branch or Deutsche Securities Asia Limited, Singapore Branch (one Raffles Quay #18-00 South Tower Singapore 14858), +66 6423 8001), and recipients in Singapore of this report are to contact Deutsche Bank AG, Singapore Branch or Deutsche Securities Asia Limited, Singapore Branch in the applicable Singapore laws and regulations), Deutsche Bank AG, Singapore Branch or Deutsche Securities Asia Limited, Singapore Branch accepts legal responsibility to such person for the contents of this report. In Japan this report is approved and/or distributed by Deutsche Securities Asia Limited, Singapore Branch accepts legal responsibility to such person for the contents of this report. In Japan this report is approved and/or distributed person and accepts legal responsibility to such person for the contents of this report. In Japan this report is approved and/or distributed person for the report and accepts legal responsibility to such person for the contents of this report. Bank AG, Mannesburg is incorporated in the Foderal Republic of Germany (Branch Register Number in South Africa: 1998/003298/10). Additional information relative to securities, other financial products

Copyright © 2014 Deutsche Bank AG

Deutsche Bank AG Filiale Hongkong International Commerce Centre, 1 Austin Road West, Kowloon, Hona Kona Tel: (852) 2203 8888

#### Deutsche Securities Inc.

2-11-1 Nagatacho Sanno Park Tower Chiyoda-ku, Tokyo 100-6171 Japan . Tel: (81) 3 5156 6770